BioThings SDK

BioThings team

Feb 28, 2024

1 What’s BioThings?
2 BioThings SDK

3 BioThings API

4 BioThings Studio
5 Installation

6 Quick Start

6.1 BioThings Studio
6.2 BioThingsCLI

6.7 Dbiothingsweb.
6.8 Dbiothings.tests
6.9 Dbiothings.utilso ..
6.10 biothings.hub L0000
6.11 biothings.cli

6.3 BioThings Standalone
6.6 DataTransform Module
Python Module Index
Index

6.4 BioThingsHub
6.5 BioThingsWeb

PRODUCTS

CHAPTER
ONE

WHAT’S BIOTHINGS?

We use “BioThings” to refer to objects of any biomedical entity-type represented in the biological knowledge space,
such as genes, genetic variants, drugs, chemicals, diseases, etc.

BioThings SDK

2 Chapter 1. What’s BioThings?

CHAPTER
TWO

BIOTHINGS SDK

SDK represents “Software Development Kit”. BioThings SDK provides a Python-based toolkit to build high-
performance data APIs (or web services) from a single data source or multiple data sources. It has the particular
focus on building data APIs for biomedical-related entities, a.k.a “BioThings”, though it’s not necessarily limited to the
biomedical scope. For any given “BioThings” type, BioThings SDK helps developers to aggregate annotations from
multiple data sources, and expose them as a clean and high-performance web APIL

The BioThings SDK can be roughly divided into two main components: data hub (or just “hub’’) component and web
component. The hub component allows developers to automate the process of monitoring, parsing and uploading your
data source to an Elasticsearch backend. From here, the web component, built on the high-concurrency Tornado Web
Server , allows you to easily setup a live high-performance API. The API endpoints expose simple-to-use yet powerful
query features using Elasticsearch’s full-text query capabilities and query language.

https://www.python.org/
https://www.elastic.co/products/elasticsearch
http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/query-dsl-query-string-query.html#query-string-syntax

BioThings SDK

4 Chapter 2. BioThings SDK

CHAPTER
THREE

BIOTHINGS API

We also use “BioThings API” (or BioThings APIs) to refer to an API (or a collection of APIs) built with BioThings SDK.
For example, both our popular MyGene.Info and My Variant.Info APIs are built and maintained using this BioThings
SDK.

http://mygene.info/
http://myvariant.info/

BioThings SDK

6 Chapter 3. BioThings API

CHAPTER
FOUR

BIOTHINGS STUDIO

BioThings Studio is a buildin, pre-configured environment used to build and administer BioThings API. At its core is the
Hub, a backend service responsible for maintaining data up-to-date, producing data releases and update API frontends.

BioThings SDK

8 Chapter 4. BioThings Studio

CHAPTER
FIVE

INSTALLATION

You can install the latest stable BioThings SDK release with pip from PyPI, like:

[pip install biothings

You can install the latest development version of BioThings SDK directly from our github repository like:

[pip install git+https://github.com/biothings/biothings.api.git#egg=biothings

Alternatively, you can download the source code, or clone the BioThings SDK repository and run:

[python setup.py install

https://pypi.python.org/pypi
http://github.com/biothings/biothings.api

BioThings SDK

10 Chapter 5. Installation

CHAPTER
SIX

QUICK START

We recommend to follow this tutorial to develop your first BioThings API in our pre-configured BioThings Studio
development environment.

6.1 BioThings Studio

BioThings Studio is a pre-configured environment used to build and administer BioThings API. At its core is the Hub,
a backend service responsible for maintaining data up-to-date, producing data releases, and updating API frontends.

6.1.1 A. Tutorial

This tutorial will guide you through BioThings Studio by showing, in a first part, how to convert a simple flat file to a
fully operational BioThings APIL. In a second part, this API will enrich for more data.

Note: You may also want to read the developer’s guide for more detailed informations.

Note: The following tutorial uses a docker-compose file to run the BioThings Studio and Hub. This file is available
here

1. What you’ll learn

Through this guide, you’ll learn:
* how to run a docker-compose to run your favorite API
* how to run that image inside a Docker container and how to access the BioThings Studio application
* how to integrate a new data source by defining a data plugin
* how to define a build configuration and create data releases
* how to create a simple, fully operational BioThings API serving the integrated data

* how to use multiple datasources and understand how data merge is done

11

tutorial/studio.html
doc/studio.html
studio_guide.html
https://github.com/biothings/biothings_docker

BioThings SDK

2. Prerequisites

Using BioThings Studio requires a Docker server up and running, some basic knowledge about commands to run and
use containers. Images have been tested on Docker >=17.

You can install your own Docker server (on recent Ubuntu systems, sudo apt-get install docker.io is usually
enough). You may need to point Docker images directory to a specific hard drive to get enough space, using -g option:

/mnt/docker points to a hard drive with enough disk space
sudo echo 'DOCKER_OPTS="-g /mnt/docker"' >> /etc/default/docker
restart to make this change active

sudo service docker restart

Alternatively, if you have a Mac or Windows, you can install Docker Desktop. It will install the docker server for
you. Once you have Docker Desktop installed, go to settings->resources->advanced. You should give at least 80% of
your resources to Docker for each category. This will prevent your Docker from crashing if you are running a large
datasource or build.

3. Installation

BioThings Studio is available as a docker-compose file at our github repository. Clone the repository to your local.

A BioThings Studio instance exposes several services on different ports:

8080: BioThings Studio web application port

7022: BioThings Hub SSH port

7080: BioThings Hub REST API port

7081: BioThings Hub REST API port, read-only access

9200: ElasticSearch port

27017: MongoDB port

8000: BioThings API, once created, it can be any non-priviledged (>1024) port

9000: Cerebro, a webapp used to easily interact with ElasticSearch clusters

Note:

Ports 8080, 7022, 7080, 9200, 27017, 8000, 9000 are exposed by default in the docker-compose.yml file.

[$ docker compose up -d --build

We can follow the starting sequence using docker logs command:

$ docker logs -f biothings

ARG

SSH keys not yet created, creating
Generating SSH Keys for BioThings Hub...
SSH Key has been generated, Public Key:

Please refer to Filesystem overview and Services check for more details about Studio’s internals.

We can now access BioThings Studio using the dedicated web application (see webapp overview).

12

Chapter 6. Quick Start

https://www.docker.com/products/docker-desktop
https://github.com/biothings/biothings_docker/
https://github.com/lmenezes/cerebro
studio_guide.html#filesystem-overview
studio_guide.html#services-check
studio_guide.html#overview-of-biothings-studio-web-application

BioThings SDK

4. Getting start with data plugin

In this section we’ll dive in more details on using the BioThings Studio and Hub. We will be integrating a simple flat
file as a new datasource within the Hub, declare a build configuration using that datasource, create a build from that
configuration, then a data release and finally instantiate a new API service and use it to query our data.

The whole source code is available at https://github.com/biothings/tutorials/tree/master, each branch pointing to a
specific step in this tutorial.

4.1. Input data

For this tutorial, we will use several input files provided by PharmGKB, freely available in their download section,
under “Annotation data”:

 annotations.zip: contains a file var_drug_ann. tsv about variant-gene-drug annotations. We’ll use this file for
the first part of this tutorial.

 druglabels.zip: contains a file drugLabels.byGene. tsv describing, per gene, which drugs have an impact of
them

 occurrences.zip: contains a file occurrences. tsv listing the literature per entity type (we’ll focus on gene type
only)

The last two files will be used in the second part of this tutorial when we’ll add more datasources to our APIL.

These files will be downloaded by the Hub when we trigger the dumper. These files will go into a folder named
data_folder by default. This will be explained in more detail in the Data Plugin section.

4.2. Parser

In order to ingest this data and make it available as an API, we first need to write a parser. Data is pretty simple,
tab-separated files, and we’ll make it even simpler by using pandas python library. The first version of this parser is
available in branch pharmgkb_v1 at https://github.com/biothings/tutorials/blob/pharmgkb_v1/parser.py. After some
boilerplate code at the beginning for dependencies and initialization, the main logic is the following:

def load_annotations(data_folder):

results = {}
for rec in dat:

if not rec["Gene"] or pandas.isna(rec["Gene"]):
logging.warning("'No gene information for annotation ID '

, rec["Annotation.,
~ID"1)
continue

_id = re.match(".* \((.*?)\)",rec["Gene"]) .groups() [0]

We'll remove space in keys to make queries easier. Also, lowercase is preferred

for a BioThings API. We'll use an helper function ‘dict_convert()' from BioThings.
—SDK

process_key = lambda k: k.replace(" ","_").lower()

rec = dict_convert(rec,keyfn=process_key)

results.setdefault(_id, []) .append(rec)

for _id,docs in results.items():
doc = {"_id": _id, "annotations" : docs}
yield doc

6.1. BioThings Studio 13

https://github.com/biothings/tutorials/tree/master
https://www.pharmgkb.org/
https://www.pharmgkb.org/downloads
https://s3.pgkb.org/data/annotations.zip
https://s3.pgkb.org/data/drugLabels.zip
https://s3.pgkb.org/data/occurrences.zip
studio.html#id1
https://github.com/biothings/tutorials/blob/pharmgkb_v1/parser.py

BioThings SDK

Our parsing function is named load_annotations, it could be named anything else, but it has to take a folder path
data_folder containing the downloaded data. This path is automatically set by the Hub and points to the latest version
available. More on this later.

infile = os.path.join(data_folder, "var_drug_ann.tsv'")
assert os.path.exists(infile)

It is the responsibility of the parser to select, within that folder, the file(s) of interest. Here we need data from a file
named var_drug_ann. tsv. Following the moto “don’t assume it, prove it”, we make that file exists.

Note: In this case, an assertion isn’t necessary as code will fail anyway if the file doesn’t exist. But it’s a good practice
to make sure the file exists before trying to open it. Also, it’s a good practice to use os.path. join() to build the path
to the file, as it will automatically use the right path separator depending on the operating system.

dat = pandas.read_csv(infile,sep="\t", squeeze=True,quoting=csv.QUOTE_NONE) .to_
—dict(orient="records")

results = {}

for rec in dat:

We then open and read the TSV file using pandas.read_csv() function. At this point, a record rec looks like the
following:

{'Alleles': 'A',
'Annotation ID': 608431768,
'Chemical': 'warfarin (PA451906)',
'Chromosome': 'chrl',
'Gene': 'EPHX1 (PA27829)',
'Notes': nan,
'PMID': 19794411,
'Phenotype Category': 'dosage',
'Sentence': 'Allele A is associated with decreased dose of warfarin.',
'Significance': 'yes',
'StudyParameters': '608431770',
'Variant': 'rs1131873'}

Keys are uppercase, for a BioThings API, we like to have them as lowercase. More importantly, we want to remove
spaces in those keys as querying the API in the end will be hard with spaces. We’ll use a special helper function from
BidThings SDK to process these.

process_key = lambda k: k.replace(" ","_").lower()

rec = dict_convert(rec,keyfn=process_key)

Finally, because there could be more than one record by gene (ie. more than one annotation per gene), we need to store
those records as a list, in a dictionary indexed by gene ID. The final documents are assembled in the last loop.

results.setdefault(_id, []) .append(rec)

for _id,docs in results.items():
doc = {"_id": _id, "annotations" : docs}
yield doc

14 Chapter 6. Quick Start

BioThings SDK

Note: The _id key is mandatory and represents a unique identifier for this document. The type must be a string. The
_id key is used when data from multiple datasources are merged together, that process is done according to its value (all
documents sharing the same _id from different datasources will be merged together). Due to the indexing limitation,
the length of the _id key should be kept no more than 512.

Note: In this specific example, we read the whole content of this input file in memory, then store annotations per gene.
The data itself is small enough to do this, but memory usage always needs to be cautiously considered when we write
a parser.

Note: In this case, the final documents are assembled within a generator function, which is a good practice to save
memory. You may see within our Biothings github organization that we have plugins where we return a dictonary or a
list of documents. This is also fine, but it is recommended to use a generator function when possible.

4.3. Data plugin

Parser is ready, it’s now time to glue everything together and build our API. We can easily create a new datasource and
integrate data using BioThings Studio, by declaring a data plugin. Such plugin is defined by:

« afolder containing a manifest.json file, where the parser and the input file location are declared

* all necessary files supporting the declarations in the manifest, such as a python file containing the parsing function
for instance.

This folder must be located in the plugins directory (by default /data/biothings_studio/plugins, where the
Hub monitors changes and reloads itself accordingly to register data plugins. Another way to declare such plugin is to
register a github repository that contains everything useful for the datasource. This is what we’ll do in the following
section.

Note: Whether the plugin comes from a github repository or directly found in the plugins directory doesn’t really
matter. In the end, the code will be found in that same plugins directory, whether it comes from a git clone
command while registering the github URL or from folder(s) and file(s) manually created in that location. However,
when developing a plugin, it’s easier to directly work on local files first so we don’t have to regurlarly update the plugin
code (git pull) from the webapp, to fetch the latest code. That said, since the plugin is already defined in github in
our case, we’ll use the github repo registration method.

The corresponding data plugin repository can be found at https://github.com/biothings/tutorials/tree/pharmgkb_v1.
The manifest file looks like this:

{
"version": "0.2",
"requires" : ["pandas"],
"dumper" : {

"data_url" : ["https://s3.pgkb.org/data/annotations.zip",
"https://s3.pgkb.org/data/druglLabels.zip",
"https://s3.pgkb.org/data/occurrences.zip"],

"uncompress" : true

i

"uploader" : {

(continues on next page)

6.1. BioThings Studio 15

https://www.elastic.co/guide/en/elasticsearch/reference/8.4/mapping-id-field.html
https://github.com/biothings
https://github.com/biothings/tutorials/tree/pharmgkb_v1

BioThings SDK

(continued from previous page)

"parser" : "parser:load_annotations",
"on_duplicates" : "error"

* version specifies the manifest version (it’s not the version of the datasource itself) and tells the Hub what to expect
from the manifest.

* parser uses pandas library, we declare that dependency in requires section.

* the dumper section declares where the input files are, using data_url key. In the end, we’ll use 3 different files so
a list of URLSs is specified there. A single string is also allowed if only one file (ie. one URL) is required. Since
the input file is a ZIP file, we first need to uncompress the archive, using uncompress : true.

e the uploader section tells the Hub how to upload JSON documents to MongoDB. parser has a special for-
mat, module_name:function_name. Here, the parsing function is named load_annotations and can be found in
parser.py module. ‘on_duplicates’ : ‘error’ tells the Hub to raise an error if we have documents with the same
_id (it would mean we have a bug in our parser).

For more information about the other fields, please refer to the plugin specification.

Let’s register that data plugin using the Studio. First, copy the repository URL:

s: tutorials Public s EditPins ~ & Watch 10 ~

master 7 Branches 0 Tags Add file <> Code ~

@0 jal347 Deleting main directory everything will be moved to brar

Clone
B pharmgkb adjust doc ke

HTTPS SSH GitHub CLI
[.gitignore Initial commit

- . https://github.com/biothings/tutorials.git
[9 LICENSE Initial commit

[README Deleting mair

Open with GitHub Desktop
README Apache-2.0 license
Download ZIP

Master branch is inactive, use pharmgkb_x branches for more.

€ Sources
Now go to the Studio web application at http://localhost:8080, click on the - tab, then icon,

this will open a side bar on the left. Click on New data plugin, you will be asked to enter the github URL. Click “OK”
to register the data plugin.

16 Chapter 6. Quick Start

studio_guide.html#data-plugin-architecture-and-specifications
http://localhost:8080

BioThings SDK

¥ Register a new datasource

Specify a repository type and URL

https:/github.com/sirloon/pharmgkb.git

Interpreting the manifest coming with the plugin, BioThings Hub has automatically created for us:

e adumper using HTTP protocol, pointing to the remote file on the CGI website. When downloading (or dumping)
the data source, the dumper will automatically check whether the remote file is more recent than the one we may
have locally, and decide whether a new version should be downloaded.

* and an uploader to which it “attached” the parsing function. This uploader will fetch JSON documents from the
parser and store those in MongoDB.

At this point, the Hub has detected a change in the datasource code, as the new data plugin source code has been pulled
from github locally inside the container. In order to take this new plugin into account, the Hub needs to restart to load
the code. The webapp should detect that reload and should ask whether we want to reconnect, which we’ll do!

Hub is restarting

Do you want to reconnect ?

Once you reconnect, you will have to do a hard refresh on your webpage, for example, cmd + shift + r on a Mac
or ctrl + shift + r ona Windows/Linux.

Since we fetch source code from branch master, which doesn’t contain any manifest file. We need to switch to another
branch (this tutorial is organized using branches, and also it’s a perfect opportunity to learn how to use a specific
branch/commit using BioThings Studio.. .)

Plugin
Let’s click on tutorials link, then . In the textbox on the right, enter pharmgkb_v1 then click on
Update.
pharmgkb_v1| € Update
X Export code

BioThings Studio will fetch the corresponding branch (we could also have specified a commit hash for instance), source
code changes will be detected and the Hub will restart. The new code version is now visible in the plugin tab

6.1. BioThings Studio 17

BioThings SDK

Note: Remember to do a hard refresh again before continuing as the hub will attempt to restart.

Plugin Mapping

URL (]

Release pharmgkb_v1

Source folder

Last download 2020-01-15T23:50:29.027Z (a few seconds ago)

Duration 0.58s

€ Sources
If we click back on - PharmGKB appears fully functional, with different actions available:

tutorials

M 0 documents

- I is used to trigger the dumper and (if necessary) download remote data

o T will trigger the uploader (note it’s automatically triggered if a new version of the data is available)

@
J can be used to “inspect” the data, more of that later

Let’s open the datasource by clicking on its title to have more information. Dumper and Uploader tabs are rather empty
since none of these steps have been launched yet. Without further waiting, let’s trigger a dump to integrate this new

€ Sources
. : & D . = .
datasource. Either go to Dump tab and click on Y™ or click on to go back to the sources list

. o
and click on at the bottom of the datasource.

The dumper is triggered, and after few seconds, the uploader is automatically triggered. Commands can be listed by
clicking at the top the page. So far we’ve run 3 commands to register the plugin, dump the data and upload the JSON
documents to MongoDB. All succeeded.

18 Chapter 6. Quick Start

BioThings SDK

CGED EIE TS DTS XS TN

@ showall

v 3 dump(src="tutorials'force=False) 2.21s

v 4 upload_src('tutorials') 0.97s

We also have new notifications as shown by the speakerphone icon number on the left. Let’s have a quick look:

G EN OO G OEETS

Clear

upload_tutorials

success [steps=data,post,master,clean] 01:18:20

dump_tutorials

success [steps=dump,post] 01:18:18

Going back to the source’s details, we can see the Dumper has been populated. We now know the release number, the
data folder, when the last download was, how long it tooks to download the file, etc...

Dumper Uploader Plugin Mapping

Release 2020-01-05
Status success
Data folder

Last download 2020-01-15T23:58:03.366Z (a minute ago)
Duration 1.43s

Dumper biothings.hub.dataplugin.assistant.AssistedDumper_pharmgkb

Same for the Uploader tab, we now have 979 documents uploaded to MongoDB. Exact number may change depending
on when the source file that is downloaded.

6.1. BioThings Studio 19

BioThings SDK

Dumper Uploader Plugin Mapping

Release 2020-01-05

Data folder

Status success

Last upload 2020-01-15T23:58:10.015Z (2 minutes ago)
Duration 0.61s

Documents uploaded 979

Uploader biothings.hub.dataplugin.assistant.AssistedUploader_pharmgkb

4.4. Inspection and mapping

Now that we have integrated a new datasource, we can move forward. Ultimately, data will be sent to ElasticSearch,
an indexing engine. In order to do so, we need to tell ElasticSearch how the data is structured and which fields should
be indexed (and which should not). This step consists of creating a “mapping”, describing the data in ElasticSearch
terminology. This can be a tedious process as we would need to dig into some tough technical details and manually
write this mapping. Fortunately, we can ask BioThings Studio to inspect the data and suggest a mapping for it.

In order to do so, click on Mapping tab, then click on € 'mpectdata

We can inspect the data for different purposes:
* Mode

— type: inspection will report any types found in the collection, giving detailed information about the struc-
ture of documents coming from the parser. Note results aren’t available from the webapp, only in MongoDB.

— stats: same as type but gives numbers (count) for each structures and types found. Same as previous,
results aren’t available in the webapp yet.

— mapping: inspect the date types and suggest an ElasticSearch mapping. Will report any error or types
incompatible with ES.

Here we’ll stick to mode mapping to generate that mapping. There are other options used to explore the data to inspect:
e Limit: limit the inspected documents.

e Sample: randomize the documents to inspect (1.0 = consider all documents, 0.0 = skip all documents, 0.5 =
consider every other documents)

The last two options can be used to reduce the inspection time of huge data collection, or you're absolutely sure the
same structure is returned for any documents output from the parser.

20 Chapter 6. Quick Start

BioThings SDK

LO

Inspect data: mvcgi

Selecting more than one mode won't affect much the performance, running time will roughly be the same.

mapping

Analyzes data so the inspection results can be converted into an ElasticSearch
mapping (used during indexing step)

type

Builds a map of all types involved in the data, providing a summary of its structure
stats

Performs in-depth analysis about the data, including type map and basic statistics,
showing how volumetry fits over data structure

mapping

Optional parameters

Limit
Restrict inspection to this number of documents. If empty, all documents are inspected.

Sampling data

Randomly pick documents to inspect. Value is a float between 0 and 1.0. If sampling is 1.0, all documents are
picked, if 0.0, none of them. Combined with parameter "limit", it allows to randomly inspect a subset of the
data.

% Cancel

Since the collection is very small, inspection is fast. But... it seems like we have a problem
Mapping from inspection

Validate on localhub T » Commit

A Found errors while generating the mapping:

¢ More than one type (key:'notes',types:[<class 'biothings.utils.common.splitstr'>, <class
'biothings.utils.common.nan'>])

Mapping can't be generated until those errors are fixed. Please fix the parser or the data and try
again.

For debugging purposes, below is a pre-mapping structure, where errors can be spot.

"oidTs

"

~

__type :str": {}
b
"annotations": {
"__type_ :list": {
"annotation id": {
" type_ :int": {}

More than one type was found for a field named notes. Indeed, if we scroll down on the pre-mapping structure, we
can see the culprit:

6.1. BioThings Studio 21

BioThings SDK

i
"notes": {

" type :splitstr": {},
__type_ :nan": {}

"

}f

"sentence": {

This result means documents sometimes have notes key equal to NaN, and sometimes equal to a string (a splittable
string, meaning there are spaces in it). This is a problem for ElasticSearch because it wouldn’t index the data properly.
And furthermore, ElasticSearch doesn’t allow NaN values anyway. So we need to fix the parser. The fixed version is
available in branch pharmgkb_v2 (go back to Plugin tab, enter that branch name and update the code). The fix consists
in removing key/value from the records, whenever a value is equal to NaN.

[rec = dict_sweep(rec,vals=[np.nan])

Once fixed, we need to re-upload the data, and inspect it again. This time, no error, our mapping is valid:

{
"annotations": {
"properties": ({

" " . {
"type": "integer"

b

" "
"type": "integer"

b

" "
"normalizer": "keyword lowercase normalizer",
"type": "keyword"

b

" " g
"normalizer": "keyword lowercase normalizer",
"type": "keyword"

b

" "eog
"normalizer": "keyword lowercase normalizer",
"type": "keyword"

b

" " : {
"type": "text"

N For each highlighted

field, we can decide whether we want the field to be searchable or not, and whether the field should be searched
by default when querying the API. We can also change the type for that field, or even switch to “advanced mode” and
specify your own set of indexing rules. Let’s click on “gene” field and make it searched by default. Let’s also do the
same for field “variant”.

22 Chapter 6. Quick Start

https://github.com/biothings/tutorials/blob/pharmgkb_v2/parser.py#L32

BioThings SDK

Modify indexing rules
Field: gene » Enable index allows a field to be searchable. If indexing is disabled, values are still
Path: annotations.gene stored and returned in results, but they can't be directly queried. Indexing takes
disk space and can also impact performances, only index fields which make sense
¥ Index this field to query.
» When Search by default is enabled, field can be searched without specifying the
| Search this field by default full path. Note: _id field is an exception, path is not required.
Ex:
Change type text - o When searching by default is disabled, searching gene field requires to
specify the full path:
{ /query?g=annotations.gene:value_to_search
"type": "text®, e When searching by default is enabled, path can be omitted, value_to_search
copy_ten: 1 will be searched in all fields declared as searchable by default.

] /query?qg=value_to_search.

Z » ElasticSearch field data type can be changed if needed. See Field datatypes for
more information. Note: only core datatypes are available in this list

» Field definition can also be manually specificed in the text box, using JSON

notation, for more advanced usage.

Indeed, by checking the “Search by default” checkbox, we will be able to search for instance gene symbol “ABL1” with
/query?q=ABL1 instead of /query?g=annotations.gene:ABL1. Same for “variant” field where we can specify a
rsid.

Edited
After this modification, you should see at the top of the mapping, let’s save our changes clicking

S s .
on = | Also, before moving forwared, we want to make sure the mapping is valid, let’s click on

Validate on localhub .
. You should see this success message:

Mapping from inspection

%] Save Validate on localhub - » Commit

Mapping has successfully been validated.

Note: “Validate on localhub” means Hub will send the mapping to ElasticSearch by creating a temporary, empty index
to make sure the mapping syntax and content are valid. It’s immediately deleted after validation (whether successful
or not). Also, “localhub” is the default name of an environment. Without further manual configuration, this is the only
development environment available in the Studio, pointing to embedded ElasticSearch server.

Everything looks fine, the last step is to “commit” the mapping, meaning we’re ok to use this mapping as the official,
registered mapping that will actually be used by ElasticSearch. Indeed the left side of the page is about inspected
mapping, we can re-launch the inspection as many times as we want, without impacting active/registered mapping (this

is usefull when the data structure changes). Click on > o™

registered mapping on the right:

then “YES”, and you now should see the final,

6.1. BioThings Studio 23

BioThings SDK

Registered mapping

5] Save Validate on localhub -

{
"annotations": {
"properties": {
"annotation_id": {
"type": "integer"
I
"pmid": {
"type": "integer"
iy

"phenotype_category": {
"normalizer": "keyword lowercase_normalizer",

"type": "keyword"
b
"studyparameters": {
"normalizer": "keyword lowercase_normalizer",
"type": "keyword"
I
"chromosome": {
"normalizer": "keyword lowercase normalizer",
"type": "keyword"
i
"variant": {
"type": "text",
"copy_to": [
"all"
]
I
"gene": {
"type": "text",
"copy_to": [
"all"

4.5. Build

Once we have integrated data and a valid ElasticSearch mapping, we can move forward by creating a build configuration.

& Builds

A build configuration tells the Hub which datasources should be merged together, and how. Click on

5

New configuration

then and finally, click on

24 Chapter 6. Quick Start

BioThings SDK

/ Create/edit build configuration

Enter a build configuration name

default

Enter a name for the type of stored documents ("gene", "variant", ...)

gene

Select the sources used to create merged data

tutorials

Once sources are selected, choose sources providing root
documents

Select a builder type
biothings.hub.databuild.builder.LinkDataBuilder

About this builder

LinkDataBuilder creates a link to the original datasource to
be merged, without actually copying the data (merged
collection remains empty). This builder is only valid when
using only one datasource (thus no real merge) is declared in
the list of sources to be merged, and is useful to prevent data
duplication between the datasource itself and the resulting
merged collection.

enter a name for this configuration. We’re going to have only one configuration created through this tutorial so
it doesn’t matter, let’s make it “default”

the document type represents the kind of documents stored in the merged collection. It gives its name to the
annotate API endpoint (eg. /gene). This source is about gene annotations, so “gene” it is...

open the dropdown list and select the sources you want to be part of the merge. We only have one, “pharmgkb”

in root sources, we can declare which sources are allowed to create new documents in the merged collection. If
a root source is declared, data from other sources will only be merged if documents previously exist with same
IDs (documents coming from root sources). If not, data is discarded. Finally, if no root source is declared, any
data sources can generate a new document in the merged data. In our case, we can leave it empty (no root sources
specified, all sources can create documents in the merged collection).

selecting a builder is optional, but for the sake of this tutorial, we’ll choose LinkDataBuilder. This special
builder will fetch documents directly from our datasources pharmgkb when indexing documents, instead of
duplicating documents into another connection (called target or merged collection). We can do this (and save

6.1.

BioThings Studio 25

BioThings SDK

time and disk space) because we only have one datasource here.
* the other fields are for advanced usage and are out-of-topic for this tutorial

Click “OK” and open the menu again, you should see the new configuration available in the list.
default @ Create new build
Other actions [Edit configuration

[l Delete configuration
New configuration

Click on it and create a new build.

Create new build

Enter a name for the merged data collection or leave it empty to generate a random one

|Co|lection name

. Skip sanity checks and force build (not recommended)

You can give a specific name for that build, or let the Hub generate one for you. Click “OK?”, after a few seconds, you
should see the new build displayed on the page.

26 Chapter 6. Quick Start

BioThings SDK

default_20240109_9fbrkmja

O 1,018 documents 20240109
Sources Stats Logs
Datasource Version
tutorials 2024-01-05

@]

Open it by clicking on its name. You can explore the tabs for more information about it (sources involved, build times,
etc...). The “Release” tab is the one we’re going to use next.

4.6. Data release

If not there yet, open the new created build and go the “Release” tab. This is the place where we can create new data

. New release
releases. Click on

@ Create newrelease

Select the type of release
Note: sources providing root documents, or root sources, are

full sources allowed to create a new document in a build (merged
data). If aroot source is declared, data from other sources
Enter a name for the index (or leave it empty to have the same name will only be merged if documents previously exist with same
as the build) IDs (documents coming from root sources). If not, data is
discarded. Finally, if no root source is declared, any data
sources can generate a new document in the merged data.

Select an indexer environment to create the index on

localhub (elasticsearch:9200)

Since we only have one build available, we can’t generate an incremental release, so we’ll have to select full this time.

6.1. BioThings Studio 27

BioThings SDK

Click “OK” to launch the process.

Note: Should there be a new build available (coming from the same configuration), and should there be data differ-
ences, we could generate an incremental release. In this case, Hub would compute a diff between previous and new
builds and generate diff files (using JSON diff format). Incremental releases are usually smaller than full releases,
usually take less time to deploy (applying diff data) unless diff content is too big (there’s a threshold between using an
incremental and a full release, depending on the hardware and the data, because applying a diff requires you to first
fetch the document from ElasticSearch, patch it, and then save it back).

Hub will directly index the data on its locally installed ElasticSearch server (Localhub environment). After few
seconds, a new full release is created.

Information Mapping Releases

M Index default_20200116_hb7x01i6 was created on localhub environment (localhost:9200) w0 release note(s) available | Generate
a few seconds ago (on January 16th 2020, 10:37:20 am)
Current version: 20200116

B 979.00 documents indexed m

We can easily access ElasticSearch server using the application Cerebro, which comes pre-configured with the studio.
Let’s access it through http://localhost:9000/#/connect (assuming ports 9200 and 9000 have properly been mapped, as
mentioned earlier). Cerebro provides an easy-to-manage ElasticSearch and check/query indices.

Click on the pre-configured server named BioThings Studio.

Cerebro vo.8.1

Known clusters

BioThings Studio

Node address

Clicking on an index gives access to different information, such as the mapping, which also contains metadata (sources

28 Chapter 6. Quick Start

http://www.jsondiff.com/
http://localhost:9000/#/connect

BioThings SDK

involved in the build, releases, counts, etc...)

s
"default_20200116_hb7x01i6": { -
ings": { -

4.7. API creation

At this stage, a new index containing our data has been created on ElasticSearch, it is now time for final step. Click on

G

New API

O API
then and finally

We’ll name it pharmgkb and have it running on port 8000.

Note: Spaces are not allowed in API names

6.1. BioThings Studio 29

BioThings SDK

© Create new API

Enter a name for the API

pharmgkb

Enter a description for the API (optional)

Description

Select a backend the API will connect to to serve the data

localhub (localhost:9200 | default_20200116_hb7xo01i6) -

Specify a port

Once form is validated a new API is listed.

pharmgkb

ElasticSearch localhost:2200

host
Index default_20200116_hb7xo01i6
Document
gene
type
API port 8000
> []

To turn on this API instance, just click on > , you should then see a m label on the top right corner, meaning
the API can be accessed:

30 Chapter 6. Quick Start

BioThings SDK

pharmgkb m

¢ Metadata:
http://6d5a7a0aa54a:8000/metadata

¢ Query: http://6d5a7a0aa54a:8000/query?q="*

Note: When running, queries such /metadata and /query?q=* are provided as examples. They contain a hostname
set by Docker though (it’s the Docker instance’s hostname), which probably means nothing outside of Docker’s context.
In order to use the API you may need to replace this hostname by the one actually used to access the Docker instance.

4.8. Tests

Assuming API is accessible through http://localhost:8000, we can easily query it with curl for instance. The endpoint
/metadata gives information about the datasources and build date:

$ curl localhost:8000/metadata

{
"biothing_type": "gene",
"build_date": "2020-01-16T18:36:13.450254",
"build_version": "20200116",
"src": {
"pharmgkb": {
"stats": {
"pharmgkb": 979
}l
"version": "2020-01-05"
b
B
"stats": {
"total": 979
}
b

Let’s query the data using a gene name (results truncated):

$ curl localhost:8000/query?q=ABL1

{
"max_score": 7.544187,
"took": 70,
"total": 1,
"hits": [
{

"_id": "PA24413",
" _score": 7.544187,
"annotations": [
{
"alleles": "T",
"annotation_id": 1447814556,
"chemical": "homoharringtonine (PA166114929)",

(continues on next page)

6.1. BioThings Studio 31

http://localhost:8000

BioThings SDK

(continued from previous page)

"chromosome": "chr9",
"gene": "ABL1 (PA24413)",
"notes": "Patient received received omacetaxine, treatment had been stopped.

—after two cycles because of clinical intolerance, but a major molecular response and.
—total disappearance of the T315I clone was obtained. Treatment with dasatinib was then.
—started and after 34-month follow-up the patient is still in major molecular response.

n
= g

"phenotype_category": "efficacy",
"pmid": 25950190,

"sentence": "Allele T is associated with response to homoharringtonine in.,
—people with Leukemia, Myelogenous, Chronic, BCR-ABL Positive as compared to allele C.",
"significance": "no",

"studyparameters'": "1447814558",
"variant": "rs121913459"
e
{
"alleles": "T",
"annotation_id": 1447814549,
"chemical": "nilotinib (PA165958345)",
"chromosome": "chr9",
"gene": "ABL1 (PA24413)",
"phenotype_category": "efficacy",
"pmid": 25950190,
"sentence": "Allele T is associated with resistance to nilotinib in people..
—with Leukemia, Myelogenous, Chronic, BCR-ABL Positive as compared to allele C.",
"significance": "no",
"studyparameters": "1447814555",
"variant": "rs121913459"

Note: We don’t have to specify annotations.gene, the field in which the value “ABL1” should be searched, because
we explicitely asked ElasticSearch to search that field by default (see fieldbydefault)

Finally, we can fetch a variant by its PharmGKB ID:

$ curl "localhost:8000/gene/PA134964409"
{
"_id": "PA134964409",
"_version": 1,
"annotations": [
{
"alleles": "AG + GG",
"annotation_id": 1448631680,
"chemical": "etanercept (PA449515)",
"chromosome": "chrl",
"gene": "GBP6 (PA134964409)",
"phenotype_category": "efficacy",

(continues on next page)

32 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

"pmid": 28470127,

"sentence": "Genotypes AG + GG is associated with increased response to etanercept.
—1in people with Psoriasis as compared to genotype AA.",

"significance": "yes",

"studyparameters": "1448631688",

"variant": "rs928655"

Most of the time, the API testing is not necessary. Unless you are specifically testing out a custom api feature. You
can learn more about customizing api web components in the Biothings Web. In our use case, you can just query the
Elasticsearch instance directly. In this example, we will be using postman, to query the Elasticsearch Index. Once you
have postman installed you can make this query http://localhost:9200/MY_BUILD_NAME/_search. Check a few
of the hits to make sure if your parser has correctly formatted the data. You can also make more detailed search queries
in the elasticsearch index if needed.

[¢ Home ~Workspaces v API Network v Q search Postman @ 0 & Usgade v
2 My Workspace New Import GET Unitied Request GET Get elasticsearch indice: GET Search Index o + v NoEnvironment v B
(] + = @ Search Index B sae v 5 ®
Collections
> APltest
5 DDE GET ~ http:/flocalhost:9200/default_20240108_aomwntkc/_search =
v Elasticsearch
Params Authorization Headers (7) Body Pre-requestScript Tests Settings Cookies </>
GET Get elasticsearch indices
Query Params
oL delete an index @
e Buk Edit
- E—— Key Value Description
&% o
GET Test Analyzer W
GeT Test Analyzer
GET Explain query
#uT Make Index Phrase Suggester Body Cookies Headers (4) TestResits @ status:200 0K Time:73ms Size: 2868KE [) Save as example see
7ost Insert a doc Pretty Raw Preview Visuaize JSON v 5 @ Q
GET Search Index
104
PosT Phrase Suggest Search 2 “took": 40,
3 “tined_out": false,
PosT Simple Phrase Suggest Search N .
PosT Phrase Suggest Collate 5
6
> Immport .
> Microbiome 8
9
> NCBIGeo 10
> nde-api u
12
> NAD 13
14
> Outbreak-growth_rate o
> Outbreak-significance 16
17
> Zenodo s
19
20
21 "_source": {
2 “annotations": [
23
2
25
2
27
28
29
30
(@ ©Oniine Q Find and replace [Console 3 Postbot [Runner & StartProxy @ Cookies [Trash B @

4.9. Conclusions

We’ve been able to easily convert a remote flat file to a fully operational BioThings API:

* by defining a data plugin, we told the BioThings Hub where the remote data was and what the parser function
was

* BioThings Hub then generated a dumper to download data locally on the server
* It also generated an uploader to run the parser and store resulting JSON documents
* We defined a build configuration to include the newly integrated datasource and then trigger a new build

* Data was indexed internally on local ElasticSearch by creating a full release

6.1. BioThings Studio 33

web.html
https://www.postman.com/

BioThings SDK

* Then we created a BioThings API instance pointing to that new index

The next step is to enrich that existing API with more datasources.

4.10. Multiple sources data plugin

In the previous part, we generated an API from a single flat file. This API serves data about gene annotations, but
we need more: as mentioned earlier in Input data, we also downloaded drug labels and publications information.
Integrating those unused files, we’ll be able to enrich our API even more, that’s the goal of this part.

In our case, we have one dumper responsible for downloading three different files, and we now need three different
uploaders in order to process these files. With above data plugin (4.3), only one file is parsed. In order to proceed further,
we need to specify multiple uploaders on the manifest.json file, the full example can be found in branch pharmgkb_v5
available at https://github.com/biothings/tutorials/tree/pharmgkb_vS5.

Note: You can learn more about data plugin in the section B.4. Data plugin architecture and specifications

5. Regular data source

5.1. Data plugin limitations

The data plugin architecture provided by BioThings Studio allows to quickly integrate a new datasource, describing
where the data is located, and how the data should be parsed. It provides a simple and generic way to do so, but also
comes with some limitations. Indeed, in many advanced use cases, you need to use a custom data builder instead of
LinkDataBuilder (that you used at the point 4.5). But you can not define a custom builder on the data plugin.

Luckily, BioThings Studio provides an easy to export python code that has been generated during data plugin regis-
tration. Indeed, code is generated from the manifest file, compiled and injected into Hub’s memory. Exporting the
code consists in writing down that dynamically generated code. After successful export,we have a new folder stays in
hub/dataload/sources and contains exported python files - that is a Regular data source (or a regular dumper/uploader
based data sources) Following below steps, you will learn about how to deal with a regular data source.

5.2. Code export

Note: You MUST to update above pharmgkb data plugin to the version pharmgkb_v2.

X E d
Let’s go back to our datasource, Plugin tab. Clicking on xportcode brings the following form:

34 Chapter 6. Quick Start

https://github.com/biothings/tutorials/tree/pharmgkb_v5

BioThings SDK

X Export plugin code

Plugin code can be exported to be able to modify directly the source code. This allows to create a "manual datasource" (as opposed to
automatically generated trought the plugin architecture) which can be customized in more depth, using BioThings SDK.

Plugin parts to export

Dumper

Uploader

Mapping (registered or generated from inspection)

Delete any previously exported code

. Purge

We have different options regarding the parts we can export:
e Dumper: exports code responsible for downloading the data, according to URLs defined in the manifest.
* Uploader: exports code responsible for data integration, using our parser code.

* Mapping: any mapping generated from inspection, and registered (commit) can also be exported. It’ll be part of
the uploader.

We'll export all these parts, let’s validate the form. Export results are displayed (though quickly as Hub will detect
changes in the code and will want to restart)

Plugin parts to export

[BI8[i]sl§ Dumper PharmgkbDumper exported in file hub/dataload/sources/pharmgkb/dump. py

[WIslleElelSly Uploader PharmgkbUploader exported in file hub/dataload/sources/pharmgkb/upload.py

[ETo ol V- (e e R @ 1 e R ge Rl eleeatol))) Mapping (origin registered) exported in file hub/dataload/sources/pharmgkb/upload.py

Delete any previously exported code

B Purge

You may want to adjust ACTIVE_DATASOURCES parameter
in configuration to activate this new exported datasource.

We can see the relative paths where code was exported. A message about ACTIVE_DATASOURCES is also displayed
explaining how to activate our newly exported datasource. That said, BioThings Studio by default monitors speficic
locations for code changes, including where code is exported, so we don’t need to manually activate it. That’s also the
reason why Hub has been restarted.

Once reconnected, if we go back on , we’ll see an error!

6.1. BioThings Studio 35

BioThings SDK

O 979 documents

A FEror loading manifest: Can't
register <class
'biothings.hub.dataplugin.assistant. A
ssistedDumper_pharmgkb'> for
source ‘pharmgkb’, dumper already
registered: [<class
'hub.dataload.sources.pharmgkb.du
mp.PharmgkbDumper'>]

Our original data plugin can’t registered (ie. activated) because another datasource with the same name is already
registered. That’s our new exported datasource! When the Hub starts, it first loads datasources which have been
manually coded (or exported), and then data plugins. Both our plugin and exported code is active, but the Hub can’t

know which one to use. Let’s delete the plugin, by clicking on . , and confirm the deletion.

Hub will restart again (reload page if not) and this time, our datasource is active. If we click on tutorials, we’ll see
the same details as before except the Plugin tab which disappeared. So far, our exported code runs, and we’re in the
exact same state as before, the Hub even kept our previously dumped/uploaded data.

Let’s explore the source code that has been generated through out this process. Let’s enter our docker container, and
become user biothings (from which everything runs):

$ docker exec -ti biothings /bin/bash
$ sudo su - biothings

Paths provided as export results (hub/dataload/sources/*) are relative to the started folder named
biothings_studio. Let’s move there:

$ cd ~/biothings_studio/hub/dataload/sources/

$ 1s -1la

total O

-rw-rw-r-- 1 biothings biothings 0 Jan 15 23:41 __init__.py
drwxrwxr-x 2 biothings biothings 45 Jan 15 23:41 __pycache__
drwxr-xr-x 1 biothings biothings 75 Jan 15 23:41 ..
drwxr-xr-x 1 biothings biothings 76 Jan 22 19:32 .
drwxrwxr-x 3 biothings biothings 154 Jan 22 19:32 tutorials

A tutorials folder can be found and contains the exported code:

$ cd tutorials

$ 1s

total 32

drwxrwxr-x 3 biothings biothings 154 Jan 22 19:32 .
drwxr-xr-x 1 biothings biothings 76 Jan 22 19:32 ..
-rw-rw-r-- 1 biothings biothings 11357 Jan 22 19:32 LICENSE

(continues on next page)

36 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

-rw-rw-r-- 1 biothings biothings 225 Jan 22 19:32 README

-rw-rw-r-- 1 biothings biothings 70 Jan 22 19:32 __init__.py
drwxrwxr-x 2 biothings biothings 142 Jan 22 19:45 __pycache__
-rw-rw-r-- 1 biothings biothings 868 Jan 22 19:32 dump.py
-rw-rw-r-- 1 biothings biothings 1190 Jan 22 19:32 parser.py
-rw-rw-r-- 1 biothings biothings 2334 Jan 22 19:32 upload.py

Some files were copied from data plugin repository (LICENCE, README and parser.py), the others are the exported
ones: dump .py for the dumper, upload. py for the uploader and the mappings, and __init__.py so the Hub can find
these components upon start. We’ll go in further details later, specially when we’ll add more uploaders.

For conveniency, the exported code can be found in branch pharmgkb_v3 available at https://github.com/biothings/
tutorials/tree/pharmgkb_v3. One easy way to follow this tutorial without having to type too much is to replace folder
tutorials with a clone from Git repository. The checked out code is exactly the same as code after export.

$ cd ~/biothings_studio/hub/dataload/sources/

$ rm -fr tutorials

$ git clone https://github.com/biothings/tutorials.git
$ cd tutorials

$ git checkout pharmgkb_v3

5.3. More uploaders

Now that we have exported the code, we can start the modifications. The final code can be found on branch https:
//github.com/biothings/tutorials/tree/pharmgkb_v4.

Note: We can directly point to that branch using git checkout pharmgkb_v4 within the datasource folder previ-
ously explored.

First we’ll write two more parsers, one for each addition files. Within parser.py:
* at the beginning, load_annotations is the first parser we wrote, no changes required
* load_druglabels function is responsible for parsing file named drugLabels.byGene. tsv
* load_occurrences function is parsing file occurrences. tsv

Writing parsers is not the main purpose of this tutorial, which focuses more on how to use BioThings Studio, so we
won’t go into further details.

Next is about defining new uploaders. In upload.py, we currently have one uploader definition, which looks like this:

class PharmgkbUploader(biothings.hub.dataload.uploader.BaseSourceUploader):

name = "pharmgkb"
__metadata__ = {"src_meta": {}}
idconverter = None

The important pieces of information here is name, which gives the name of the uploader we define. Currently uploader
is named pharmgkb. That’s how this name is displayed in the “Upload” tab of the datasource. We know we need three
uploaders in the end so we need to adjust names. In order to do so, we’ll define a main source, pharmgkb, then three
different other “sub” sources: annotations, druglabels and occurrences. For clarity, we’ll put these uploaders
in three different files. As a result, we now have:

6.1. BioThings Studio 37

https://github.com/biothings/tutorials/tree/pharmgkb_v3
https://github.com/biothings/tutorials/tree/pharmgkb_v3
https://github.com/biothings/tutorials/tree/pharmgkb_v4
https://github.com/biothings/tutorials/tree/pharmgkb_v4

BioThings SDK

* file upload_annotations.py, originally coming from the code export. Class definition is:

class AnnotationsUploader(biothings.hub.dataload.uploader.BaseSourceUploader):

main_source = "pharmgkb"
name = "annotations"

Note: We renamed the class itself, pharmgkb is now set as field main_source. This name matches the dumper name
as well, which is how the Hub knows how dumpers and uploaders relates to each others. Finally, the sub-source named
annotation is set as field name.

* doing the same for upload_druglabels.py:

from .parser import load_druglabels
class DruglLabelsUploader(biothings.hub.dataload.uploader.BaseSourceUploader) :

main_source = "pharmgkb"
name = "druglabels"”

def load_data(self, data_folder):
self.logger.info("Load data from directory: '%s'" % data_folder)
return load_druglabels(data_folder)

@classmethod
def get_mapping(klass):
return {}

Note: In addition to adjusting the names, we need to import our dedicated parser, load_druglabels. Following
what the Hub did during code export, we “connect” that parser to this uploader in method load_data. Finally, each
uploader needs to implement class method get_mapping, currently an empty dictionary, that is, no mapping at all.
We'll fix this soon.

* finally, upload_occurences.py will deal with occurences uploader. Code is similar as previous one.

from .parser import load_occurrences
class OccurrencesUploader(biothings.hub.dataload.uploader.BaseSourceUploader):

main_source = "pharmgkb"
name = "occurrences"

def load_data(self, data_folder):
self.logger.info("Load data from directory: '%s'" % data_folder)
return load_occurrences(data_folder)

@classmethod
def get_mapping(klass):
return {}

The last step to activate those components is to expose them through the __init__.py:

38 Chapter 6. Quick Start

BioThings SDK

from .dump import PharmgkbDumper

from .upload_annotations import AnnotationsUploader
from .upload_druglabels import DrugLabelsUploader
from .upload_occurrences import OccurrencesUploader

Upon restart, the “Upload” tab now looks like this:

Dumper Uploader Mapping

pharmgkb = = annotations druglabels occurrences
Release 2020-01-05

Data folder

Status success

Last upload 2020-01-23T23:07:03.813Z (a few seconds ago)
Duration 0.73s

Documents uploaded 979

Uploader No uploader found, datasource may be broken

We still have an uploader named pharmgkb, but that component has been deleted! Hub indeed kept information within
its internal database, but also detected that the actual uploader class doesn’t exists anymore (see message No uploader
found, datasource may be broken). In that specific case, an option to delete that internal information is provided,
let’s clock on the closing button on that tab to remove that information.

If we look at the other uploader tabs, we don’t see much information, that’s because they haven’t been launched yet.
For each on them, let’s click on “Upload” button.

S Sources
Note: Another way to trigger all uploaders at once is to click on - to list all datasources, then click on

for that datasource in particular.

After a while, all uploaders have run, data is populated, as shown in the different tabs.

6.1. BioThings Studio 39

BioThings SDK

5.4. More data inspection

Data is ready, it’s now time to inspect the data for the new uploaders. Indeed, if we check the “Mapping” tab, we still
have the old mapping from the original pharmgkb uploader (we can remove that “dead” mapping by clicking on the
closing button of the tab), but nothing for uploaders druglabels and occurences.

Looking back at the uploaders’ code, get_mapping class method was defined such as it returns an empty mapping.

@ |Inspectdata

That’s the reason why we don’t have anything shown here, let’s fix that by click on . After few seconds,

. . . » Commit
mappings are generated, we can review them, and click on

each tab.

to validate and register those mappings, for

5.5. Modifying build configuration

All data is now ready, as well as mappings, it’s time to move forward and build the merged data. We now have three
differents source for documents, and we need to merge them together. Hub™ will do so according to field _id: if two
documents from different sources share the same _id, they are merged together (think about dictionary merge).

In order to proceed further, we need to update our build configuration, as there’s currently only datasource involved in

& Builds
the merge. Clicking on , then we can edit existing configuration.
Existing configurations
default & Create new build
Other actions [2® Edit configuration [

[il Delete configuration

New configuration

There several parameters we need to adjust:
* first, since original pharmgkb uploader doesn’t anymore, that datasource isn’t listed anymore
¢ in the other hand, we now have our three new datasources, and we need to select all of them

¢ our main data is coming from annotations, and we want to enrich this data with druglabels and litterature
occurrences. But only if data first exists in annotations. Behing this requirement is the notion of root docu-
ments. When selection annotations as a source for root documents, we tell the Hub to first merge that data,
then merge the other sources only if a document from annotations with the same _id exists. If not, documents
are silently ignored.

* finally, we were previously using a LinkDataBuilder because we only had one datasource (data wasn’t copied,
but refered, or linked to the original datasource collection). We now have three datasources involved in the
merge so we can’t use that builder anymore and need to switch to the default DataBuilder one. If not, Hub
will complain and deactivate the build configuration until it’s fixed. Since we already had a previous build, we
want to specify an incremental build diff.

The next configuration is summarized in the following picture:

40 Chapter 6. Quick Start

BioThings SDK

/ Create/edit build configuration

Enter a build configuration name

defauld

Enter a name for the type of stored documents ("gene", "variant", ...)

gene

Select the sources used to create merged data

annotations druglabels occurrences

Once sources are selected, choose sources providing root
documents

annotations

Select a builder type
biothings.hub.databuild.builder.DataBuilder (default)

About this builder

Generic data builder.

Optional parameters can be added to the configuration (usefull to
customize builder behavior). Enter a JSON object structure

{
"autobuild": {
"type": "diff"
}
}

Upon validation, build configuration is ready to be used.

5.6. Incremental release

Configuration reflects our changes and is up-to-date, let’s create a new build. Click on if not already open,
then “Create a new build”

default e & Create new build
Other actions [& Edit configuration

[l Delete configuration

New configuration

6.1. BioThings Studio 41

BioThings SDK

After few seconds, we have a new build listed. Clicking on “Logs” will show how the Hub created it. We can see it first
merged annotations in the “merge-root” step (for root documents), then druglabels and occurrences sources.
The remaining steps, (diff, release note) were automatically triggered by the Hub. Let’s explore these further.

[defautt
default_20200128_cmrdvjml
O 979 documents 20200128

Sources Stats Logs

¥ Build starts
+/ merge-root
= annotations
+/ merge-others
Sdruglabels, occurrences
+ finalizing
+/ post-merge
+ metadata
+ diff-mapping
+ diff-content
+ diff-reduce
+ diff-post

+ release_note

@ - |

If we open the build and click on “Releases” tab, we have a diff release, or incremental release, as mentioned in the
“Logs”. Because a previous release existed for that build configuration (the one we did in part one), the Hub tries to
compute an release comparing the two together, identifying new, deleted and updated documents. The result is a diff
release, based on json diff format.

42 Chapter 6. Quick Start

BioThings SDK

Information Mapping Releases

+— Diff with default_20200128_xitglicz has been computed.
Old version: 20200128, current version: 20200128
Created a minute ago (on January 28th 2020, 10:19:32 am)

B 1 diff file(s) created (2 MB) Publish

22 971 updated, 0 added, 0 deleted. Mapping has changed.

In our case, one diff file has been generated, its size is 2 MiB, and contains information to update 971 documents. This
is expected since we enriched our existing data. Hub also mention the mapping has been changed, and these will be
reported to the index as we “apply” that diff release.

Note: Because we added new datasources, without modifying existing mapping in the first annotations source,
the differences between previous and new mappings correspond to “add” json-diff operations. This means we strictly
only add more information to the existing mapping. If we’d removed, and modify existing mapping fields, the Hub
would have reported an error and aborted the generation of that diff release, to prevent an error during the update of
the ElasticSearch index, or to avoid data inconsistency.

The other document that has been automatically generated is a release note.

l 1 release note(s) available | Generate

Compared with Notes

default_20200128_xitglicz ~ View

If we click on “View”, we can see the results: the Hub compared previous data versions and counts, deleted and added
datasources and field, etc... In other words, a “change log” summarizing what happened betwen previous and new
releases. These release notes are informative, but also can be published when deploying data releases (see part 3).

6.1. BioThings Studio 43

BioThings SDK

} Release note

Build version: '20200128'
Previous build version: '20200128°'
Generated on: 2020-01-28 at 18:19:40

e . e
| Updated datasource . release | new release
e S o
| pharmgkb.annotations | - 2020-01-05
| pharmgkb.druglabels | - 2020-01-05
| pharmgkb.occurrences | - 2020-01-05

1
1
1
]
]
1
1
1
1
1
]
]
1
1
1
+

prev. # of docs new # of docs |

+———+ — +
=t

1

1

|

I

i

1

1

1

1

|

i

1

1

1

+

New datasource(s): pharmgkb
Deleted datasource(s): pharmgkb

New field(s): drug_labels, occurrences

Overall, 979 documents in this release
0 document(s) added, 0 document(s) deleted, 971 document(s) updated

Let’s apply that diff release, by clicking on

We can select which index to update, from a dropdown list. We only have index, the one we created earlier in part
1. That said, Hub will do its best to filter out any incompatible indices, such those not coming from the same build
configuration, or not having the same document type.

@ Apply increment update (diff)

Select a backend to apply the diff to

localhub (localhost: 2200 | default_20200128_xitglicz)

Once confirmed, the synchronization process begins, diff files are applied to the index, just as if we were “patching”
data. We can track the command execution from the command list, and also from the notification popups when it’s
done.

44 Chapter 6. Quick Start

BioThings SDK

& 21698 MB

@ showal

v 37 sync(backend_type='es'old_db_col_names='default_20200128_xi... 1.04s r

X2 0 & 26810MB

Clear

sync

Succesfully synced index ['localhost:9200', 'default_20200128 _xitglicz', 'gene'] to reach
collection default_20200128_cmrdvjml using diff files in
'/data/biothings_studio/diff/mongo_localhost_27017_biothings_default_20200128_xitglicz-
mongo_localhost_27017_biothings_default_20200128_cmrdvjml': {'mapping_updated":
True, 'added": O, 'updated": 971, 'deleted": O, 'skipped": 0, 'metadata_updated': True, 'post-
sync': True} 19:29:30

TI'T release notelsl availlable Faenerta

Our index, currently served by our API defined in the part 1, has been updated, using a diff, or incremental, release.
It’s time to have a look at the data.

5.7. Testing final API

Because we directly apply a diff, or patch our data, on ElasticSearch index, we don’t need to re-create an API. Querying
the API should just transparently reflect that “live” update. Time to try our new enriched API. We’ll use curl again,
here few query examples:

$ curl localhost:8000/metadata
{
"biothing_type": 'gene",
"build_date": "2020-01-24T00:14:28.112289",
"build_version": "20200124",
"src": {
"pharmgkb": {
"stats": {
"annotations": 979,
"druglabels": 122,
"occurrences": 5503
B
"version": "2020-01-05"
}
L
"stats": {
"total": 979

Metadata has changed, as expected. If we compare this result with previous one, we now have three different sources:

6.1. BioThings Studio 45

BioThings SDK

annotations, druglabels and occurrences, reflecting our new uploaders. For each of them, we have the total
number of documents involved during the merge. Interestingly, the total number of documents is in our case 979 but,
for instance, occurrences shows 5503 documents. Remember, we set annotations as a root documents source,
meaning documents from others are merged only if they matched (based on _id field) an existing documents in this
root document source. In other words, with this specific build configuration, we can’t have more documents in the final
API than the number of documents in root document sources.

Let’s query by symbol name, just as before:

$ curl localhost:8000/query?q=ABL1

{
"max_score": 7.544187,
"took": 2,
"total": 1,
"hits": [
{

"_id": "PA24413",
" _score": 7.544187,
"annotations": [
{
"alleles": "T",
"annotation_id": 1447814556,
"chemical": "homoharringtonine (PA166114929)",

"chromosome": "chr9",
"gene": "ABL1 (PA24413)",
"notes": "Patient received received omacetaxine, treatment had been stopped.

—after two cycles because of clinical intolerance, but a major molecular response and.
—total disappearance of theT315I clone was obtained. Treatment with dasatinib was then.
—»started and after 34-month follow-up the patient is still in major molecular response.
"phenotype_category": "efficacy",
"pmid": 25950190,

"sentence": "Allele T is associated with response to homoharringtonine in people.
—with Leukemia, Myelogenous, Chronic, BCR-ABL Positive as compared to allele C.",
"significance": "no",

"studyparameters": "1447814558",
"variant": "rs121913459"

}l
ip
"drug_labels": [
{
"id": "PA166117941",
"name": "Annotation of EMA Label for bosutinib and ABL1,BCR"
Jr
{
"id": "PA166104914",
"name": "Annotation of EMA Label for dasatinib and ABL1,BCR"
}!
{
"id": "PA166104926",
"name": "Annotation of EMA Label for imatinib and ABL1,BCR,FIP1L1,KIT,PDGFRA,
—PDGFRB"
}!

(continues on next page)

46 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

]

"occurrences": [

{
"object_id": "PA24413",
"object_name": "ABL1",
"object_type": "Gene",
"source_id": "PMID:18385728",
"source_name": "The cancer biomarker problem.",
"source_type": "Literature"

}!

{

"object_id": "PA24413",

"object_name": "ABL1",

"object_type": "Gene",

"source_id": "PMC443563",

"source_name": "Two different point mutations in ABL gene ATP-binding domain.,
—conferring Primary Imatinib resistance in a Chronic Myeloid Leukemia (CML) patient: A.
-»case report.",

"source_type": "Literature"

b

]

We new have much information associated (much have been remove for clarity), including keys drug_labels and
occurrences coming the two new uploaders.

5.8. Conclusions

Moving from a single datasource based API, previously defined as a data plugin, we’ve been able to export this data
plugin code. This code was used as a base to extend our API, specifically:

* we implemented two more parsers, and their counter-part uploaders.
» we updated the build configuration to add these new datasources
» we created a new index (full release) and created a new API serving this new data.

So far APIs are running from within BioThings Studio, and data still isn’t exposed to the public. The next step to
publish this data and make the API available for everyone.

Note: BioThings Studio is a backend service, aimed to be used internally to prepare, test and release APIs. It is not
inteneded to be facing public internet, in other words, it’s not recommended to expose any ports, including API ports,
to public-facing internet.

6.1. BioThings Studio 47

BioThings SDK

6. Data Plugins

In our last section, we learned how to create a Regular Data Source. Now that we have learned how to dynamically
generate code for our plugin, we can discuss the different classes that we can use for our dumpers. Using these classes,
we can have an easier time creating dumpers to fit our needs when downloading different types of data on the interweb.
Here is a short summary of some of the important classes that you may typically use.

e APIDumper: This will run API calls in a clean process and write its results in one or more NDJSON documents.

* DockerContainerDumper: Starts a docker container (typically runs on a different server) to prepare the data file
on the remote container, and then download this file to the local data source folder.

* LastModifiedFTPDumper: SRC_URLS containing a list of URLs pointing to files to download, uses FTP’s
MDTM command to check whether files should be downloaded.

* LastModifiedHTTPDumper: Given a list of URLS, check Last-Modified header to see whether the file should be
downloaded.

All of data plugin types can all be reviewed in our biothings.api on github https://github.com/biothings/biothings.api/
blob/master/biothings/hub/dataload/dumper.py.

6.1. DockerContainer Plugin

Note: For this section, you will need to know how to use our Biothings CLI, as our docker compose is not built to
handle this type of plugin. Please refer back to our Biothings CLI tutorial before starting this section.

The DockerContainer plugin allows us to remotely start and control a docker container from another server, using our
Biothings Hub. Using another server to run the bulk process of our dumper can have many different use cases. For
example, if we are using a public api to create a source, we may need to call their api multiple times for testing. This
may inadvertantly cause an accidental ban. Even if we follow their rate limiting, the api may flag our IP address as a
bot. By using another server, we can minimize this issue by setting a different IP address separate from the Scripps
Network, so if there is a ban it only be contained to our one server instead of our whole network.

The steps to the DockerContainerDumper Plugin look like this:
* It boots up a container from provided parameters: image, tag, container_name.

* Runs the dump_command inside this container. This command MUST block the dumper until the data file is
completely prepared. This will guarantee that the remote file is ready for downloading.

» Optional: runs the get_version_cmd inside this container. Set this command out put as self.release.
¢ Download the remote file via Docker API, extract the downloaded .tar file.
¢ When the downloading is complete:
— if keep_container=false: Remove the above container after.
— if keep_container=true: leave this container running.
* If there are any errors during the data dump, the remote container and volumes won’t be removed.

There are additional parameters that can also be added. All of them will be listed here with a short summary, but we
will not be using all of the parameters for this tutorial:

 image: (Optional) the Docker image name

* tag: (Optional) the image tag

48 Chapter 6. Quick Start

https://github.com/biothings/biothings.api/blob/master/biothings/hub/dataload/dumper.py
https://github.com/biothings/biothings.api/blob/master/biothings/hub/dataload/dumper.py

BioThings SDK

* container_name: (Required) Boots up an existing container. If the container does not exist, it will create a new
container using the image and tag parameters.

* volumes: (Optional) Used specifally for local bind mounts. If used without a named_volume, the volume will
not automatically be removed once the data finishes dumping.

* named_volumes: (Optional) Creates a named volume to be removed when the data finishes dumping.
* path: (Required) path to the remote file inside the Docker container.

e dump_command: (Required) This command will be run inside the Docker container in order to create the remote
file.

* keep_container: (Optional) accepted values: true/false, default: false.
— If keep_container=true, the remote container will be persisted.
— If keep_container=false, the remote container will be removed in the end of dump step.
 get_version_cmd: (Optional) The custom command for checking release version of local and remote file.
Now we will need to clone the tutorial onto your local computer and switch to pharmgkb_v7.

Now we will need to install the requirements to run our Biothings CLI. We will first create a virtual environment and
then install a Biothings Hub dev environemt.

Just like our original pharmgkb plugin, we have a manifest and a parser file with the new addition of a Dockerfile. Lets
have a quick look at the manifest file.

Note: If you notice, the manifest file is in a yaml format while the previous manifest files have all been in a json format.
This is because our Hub can parse both yaml and json formatted files!

As you can see, the manifest file is in a very similar format as the manifest file in our Data Plugin <studio.html#id1>"_
section. The only difference is we have included a new data_url section within the dumper. The data_url should match
the following format:

docker://CONNECTION_NAME?image=DOCKER_IMAGE&tag=TAG&path=/path/to/
remote_file&dump_command="this is custom command"&container_name=CONTAINER_NAME&keep_container=true&get.

There seems to be an issue though looking at our listed parameters, the dump_command, path, and countainer_name
are all required, but they seem to be missing from the data_url. Lets try to dump using this manifest file to see what
happens!

Lets first build our docker file. As shown in our manifest, the data url has image=annotations so when we build we
have to make sure to name our image accordingly.

Now we can finally test our source using the Biothings CLI. Since our document size is small we can directly use the
dump_and_upload. If you are working with a larger source you will need need to use them separately and specify the
--batch-1limit flag when uploading:

We have now successfully dumped and uploaded our source. Why did we not see any of the expected errors for missing
parameters?

6.1. BioThings Studio 49

BioThings SDK

INF Success! 3

Dump
Source: tutorials
Data Folder: .biothings_hub/archive/tutorials/2024-01-17T23:42:38Z:

- var_fa_ann.tsv
study_parameters.tsv
var_pheno_ann. tsv
VERSIONS. txt
var_drug_ann.tsv
CREATED_2021-03-05. txt
clinical_ann_metadata.tsv
clinical_ann_history.tsv
clinical_ann.tsv
CLINICAL_ANNOTATIONS_README.pdf
VARIANT_ANNOTATIONS_README. pdf
LICENSE. txt
annotations.zip

Upload
Source: tutorials
DB path: /Users/jalin/Desktop/Scripps_Work/tutorials/.biothings_hub/.data_src_database
— Database: .data_src_database
— Collections:
tutorials
— Archived collections
tutorials_archive_20240117_2UoS5akt
— Temporary collections:

To answer this question, we have to take a look at the Dockerfile.

To keep the data url from becoming too difficult to read, we can directly set the paramters into a Docker LABEL object.
This is why we are able to run the dump and upload process without encountering any errors. A new directory has
been created by the CLI. Lets take a look at it.

v .biothings_hub

A4

Within the .biothings_hub/archive/tutorials/2024-01-17T23:42:38Z directory, there is an annota-
tions.zip that was dumped along with the uncompressed contents that we specified in the manifest. Since
we did not specify a version, the current datetime is automatically used for the directory name .

50 Chapter 6. Quick Start

BioThings SDK

biothings_hub/archive/tutorials/2024-01-17T23:42:38Z The .biothings_hub/biothings_hubdb and
.biothings_hub/.data_src_database are both sqlite databases that hold the information that would normally be
held in the mongodb. The former being the datasource settings and the latter holding our uploaded data.

With our uploaded data in our database, we can finally serve this data on our localhost.

The result should look something similar to this:

(.venv) (base) jalin@acBook-Pro tutorials
Install requirement 'panc
Requirement already satisfied: pandas in
d: numpy<2,>=1.23.2 in ./.venv/lib/python3.11/site-packages (from pandas) (1.26.3)
ython-dateutil>=2.8.2 in ./.venv/lib/python3.11/site-packages (from pandas) (2.8.2)
ytz>=2020.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.4)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Install requirement Dy
Requirement already satisfi umpy in venv/1ib/python3.11/site-packages (1.26.3)
vir ials
ng...Done (1018 documents)

1 2ilable
— http://localhost:9999/tutorials

& Get a document by id:
; c

Congratulations you have learned how to build a Docker based plugin! Remember to make sure to always test out some
of the queries before submitting your plugin.

1. API cloud deployments and hosting

This part is still under development... Stay tuned and join Biothings Google Groups (https://groups.google.com/
forum/#!forum/biothings) for more.

8. Troubleshooting

We test and make sure, as much as we can, that the BioThings Studio image is up-to-date and running properly. But
things can still go wrong. ..

A good starting point investigating an issue is to look at the logs from the BioThings Studio. Make sure it’s connected
(green power button on the top right), then click “Logs” button, on the bottom right. You will see logs in real-time
(if not connected, it will complain about a disconnected websocket). As you click and perform actions throughout the
web application, you will see log message in that window, and potentially errors not displayed (or with less details) in
the application.
& 2 _cmrdvJm Creating indexer Jjob #

index default 20200128 cmrdvijml 1 jobs created for indexing step

tornado.access 200 PUT /index (172.17.0.1) 160.89ms

tornado.access 200 GET /commands?running=1 (172.17.0.1) 0.84ms

tornado.access 200 GET /build/default 20200128 cmrdvjml (172.17.0.1) 15.]

tornado.access 200 GET /job manager (172.17.0.1) 4.63ms

index default 20200128 cmrdvjml Index 'default 20200128 cmrdvjml' successfully created usi

index default 20200128 cmrdvjml Running post-index process for index 'default 20200128 cm:

hub Remove PID file '/data/run/ThreadPcolExecutor-0_0_QwTjqeO!

index default 20200128 cmrdvjml Post-index process done for index ‘'default 20200128 cmrdv:

indexmanager Done indexing target 'default 20200128 cmrdviml' to index

tornado.access 200 GET /build/default 20200128 cmrdviml (172.17.0.1) 17.¢
tornado.access 304 GET /build/default 20200128 cmrdviml (172.17.0.1) 46.:Z
tornado.access 304 GET /build/default 20200128 cmrdvjml (172.17.0.1) 17.:Z
tornado.access 304 GET /build/default 20200128 cmrdviml (172.17.0.1) 16.¢
tornado.access 200 GET /commands?running=1 (172.17.0.1) 0.85ms
tornado.access 200 GET /job manager (172.17.0.1) 3.89ms

6.1. BioThings Studio 51

https://groups.google.com/forum/#!forum/biothings
https://groups.google.com/forum/#!forum/biothings

BioThings SDK

The “Terminal” (click on the bottom left button) gives access to commands you can manually type from the web
application. Basically, any action performed clicking on the application is converted into a command call. You can even
see what commands were launched and which ones are running. This terminal also gives access to more commands,
and advanced options that may be useful to troubleshoot an issue. Typing help(), or even passing a command name
such as help (dump) will print documentation on available commands and how to use them.

publish snapshot
sync

inspect

register url
unregister url
export plugin
dump plugin

restart
stop
backup
restore
help
commands
command

Type: 'help(command)' for more
hub>

>_ Terminal

On a lower level, make sure all services are running in the docker container. Enter the container with docker exec
-ti studio /bin/bash and type netstat -tnlp, you should see services running on ports (see usual running
services). If services on ports 7080 and 7022 aren’t running, it means the Hub has not started. If you just started the
instance, wait a little more as services may take a while before they’re fully started and ready.

If after ~1 min, you still don’t see the Hub running, log in as user biothings and check the starting sequence.

Note: Hub is running in a tmux session, under user biothings.

sudo su - biothings
$ tmux a # recall tmux session

$ python bin/hub.py
DEBUG:asyncio:Using selector: EpollSelector
INFO:root:Hub DB backend: {'uri': 'mongodb://localhost:27017', 'module': 'biothings.
—utils.mongo'}
INFO:root:Hub database: biothings_src
DEBUG:hub:Last launched command ID: 14
INFO:root:Found sources: []
INFO:hub:Loading data plugin 'https://github.com/sirloon/mvcgi.git' (type: github)
DEBUG:hub:Creating new GithubAssistant instance
DEBUG:hub:Loading manifest: {'dumper': {'data_url': 'https://www.cancergenomeinterpreter.
—org/data/cgi_biomarkers_latest.zip',
'uncompress': True},

'uploader': {'ignore_duplicates': False, 'parser': 'parser:load_data'},

'version': '0.1'}
INFO:indexmanager:{}
INFO:indexmanager:{'test': {'max_retries': 10, 'retry_on_timeout': True, 'es_host':
—'localhost:9200', 'timeout': 300}}
DEBUG:hub: for managers [<SourceManager [0 registered]: []>, <AssistantManager [1.

(continues on next page)

52 Chapter 6. Quick Start

studio_guide.html#services-check

BioThings SDK

(continued from previous page)
—registered]: ['github']>]
INFO:root:route: ['GET'] /job_manager => <class 'biothings.hub.api.job_manager_handler'>
INFO:root:route: ['GET'] /command/([\w\.]+)? => <class 'biothings.hub.api.command_handler
o>

INFO:root:route: ['GET'] /api/list => <class 'biothings.hub.api.api/list_handler'>
INFO:root:route: ['PUT'] /restart => <class 'biothings.hub.api.restart_handler'>
INFO:root:route: ['GET'] /status => <class 'biothings.hub.api.status_handler'>
DEBUG: tornado.general :sockjs.tornado will use json module
INFO:hub:Monitoring source code in, ['/home/biothings/biothings_studio/hub/dataload/
—sources', '/home/biothings/biothings_studio/plugins’']:
['/home/biothings/biothings_studio/hub/dataload/sources’,

' /home/biothings/biothings_studio/plugins']

You should see something like above. If not, you should see the actual error, and depending on the error, you may be
able to fix it (not enough disk space, etc...). BioThings Hub can be started again using python bin/hub.py from
within the application directory (in our case, /home/biothings/biothings_studio)

Note: Press Control-B then D to dettach the tmux session and let the Hub run in background.

By default, logs are available in /data/biothings_studio/logs/.

Finally, you can report issues and request for help, by joining Biothings Google Groups (https://groups.google.com/
forum/#!forum/biothings).

6.1.2 B. Developer’s guide

This section provides both an overview and detailed information about BioThings Studio, and is specifically aimed to
developers who like to know more about internals.

A complementary tutorial is also available, explaining how to set up and use BioThings Studio, step-by-step, by build-
ing an API from a flat file.

1. What is BioThings Studio

BioThings Studio is a pre-configured, ready-to-use application. At its core is BioThings Hub, the backend service
behind all BioThings APIs.

1.1. BioThings Hub: the backend service

Hub is responsible for maintaining data up-to-date, and creating data releases for the BioThings frontend.

The process of integrating data and creating releases involves different steps, as shown in the following diagram:

6.1. BioThings Studio 53

https://groups.google.com/forum/#!forum/biothings
https://groups.google.com/forum/#!forum/biothings
studio_tutorial.html

BioThings SDK

Remote Backend (hub) Frontend (web/api) Clients (python, R, curl,...)

S e S Py

aump)
datasource 1 @

GET /gene/1017
GET /query?qg=cdk2

/

query
interpreter

datasource 2 @

datasource 3

(O (O (C

MongoDB ElasticSearch Tornado

* data is first downloaded locally using dumpers
e parsers will then convert data into JSON documents, those will be stored in a Mongo database using uploaders
* when using multiple sources, data can be combined together using mergers

* data releases are then created either by indexing data to an ElasticSearch cluster with indexers, or by computing
the differences between the current release and previous one, using differs, and applying these differences using
syncers

The final index along with the Tornado application represents the frontend that is actually queried by the different
available clients, and is out of this document’s scope.

1.2. BioThings Studio

The architecture and different software involved in this system can be quite intimidating. To help, the whole service
is packaged as a pre-configured application, BioThings Studio. A docker image is available Docker Hub registry, and
can be pulled using:

[$ docker pull biothings/biothings-studio:0.2a J

REST API

+ Web Application
WebSocket Console l

} l

Tornado

SemanticUl) SockJS

¢ e elastic

A BioThings Studio instance exposes several services on different ports:
» 8080: BioThings Studio web application port
* 7022: BioThings Hub SSH port

54 Chapter 6. Quick Start

BioThings SDK

* 7080: BioThings Hub REST API port

» 7081: BioThings Hub read-only REST API port

* 9200: ElasticSearch port

e 27017: MongoDB port

* 8000: BioThings API, once created, it can be any non-priviledged (>1024) port
* 9000: Cerebro, a webapp used to easily interact with ElasticSearch clusters

* 60080: Code-Server, a webapp used to directly edit code in the container

BioThings Hub and the whole backend service can be accessed through different options according to some of these
services:

* a web application allows interaction with the most used elements of the service (port 8080)
* aconsole, accessible through SSH, gives access to more commands, for advanced usage (port 7022)

* a REST API and a websocket (port 7080) can be used to interact with the Hub, query the differents objects
inside, and get real-time notifications when processes are running. This interface is a good choice for third-party
integration.

1.3. Who should use BioThings Studio ?

BioThings Studio can be used in different scenarios:
* you want to contribute to an existing BioThings API by integrating a new data source

* you want to run your own BioThings API but don’t want to install all the dependencies and learn how to configure
all the sub-systems

1.4. Filesystem overview

Several locations on the filesystem are important, when it comes to change default configuration or troubleshoot the
application:

* Hub (backend service) is running under biothings user, running code is located in /home/biothings/
biothings_studio. It heavily relies on BioThings SDK located in /home/biothings/biothings.api.

* Several scripts/helpers can be found in /home/biothings/bin:

— run_studio is used to run the Hub in a tmux session. If a session is already running, it will first kill the
session and create a new one. We don’t have to run this manually when the studio first starts, it is part of
the starting sequence.

— update_studio is used to fetch the latest code for BioThings Studio
— update_biothings, same as above but for BioThings SDK
» /data contains several important folders:
— mongodb folder, where MongoDB server stores its data
— elasticsearch folder, where ElasticSearch stores its data
— biothings_studio folder, containing different sub-folders used by the Hub:

* datasources contains data downloaded by the different dumpers, it contains sub-folders named ac-
cording to the datasource’s name. Inside the datasource folder can be found the different releases, one
per folder.

6.1. BioThings Studio 55

BioThings SDK

dataupload is where data is stored when uploaded to the Hub (see below dedicated section for more).
% logs contains all log files produced by the Hub

% plugins is where data plugins can be found (one sub-folder per plugin’s name)

Note: Instance will store MongoDB data in /data/mongodb, ElasticSearch data in /data/elasticsearch/ directory, and
downloaded data and logs in /data/biothings_studio. Those locations could require extra disk space; if necessary,
Docker option -v can be used to mount a directory from the host, inside the container. Please refer to Docker docu-
mentation. It’s also important to give enough permissions so the different services (MongoDB, ElasticSearch, NGNIX,
BidThings Hub, ...) can actually write data on the docker host.

1.5. Configuration files

BioThings Hub expects some configuration variables to be defined first, in order to properly work. In most BioTh-
ings Studio, a config_hub.py defines those parameters, either by providing default value(s), or by setting them as
ConfigurationError exception. In the latter case, it means no defaults can be used and user/developer has to define it.
A final config.py file must be defined, it usually imports all parameters from config_hub.py (from config_hub
import *). That config.py has to be defined before the Hub can run.

Note: This process is only required when implementing or initializing a Hub from scratch. All BioThings Studio
applications come with that file defined, and the Hub is ready to be used.

It’s also possible to override parameters directly from the webapp/UL. In that case, new parameters’ values are stored in
the internal Hub database. Upon start, Hub will check that database and supersede any values that are defined directly
in the python configuration files. This process is handled by class biothings.ConfigurationManager.

Finally, a special (simple) dialect can be used while defining configuration parameters, using special markup within
comments above declaration. This allows to:

e provide documentation for parameters

* put parameters under different categories

* mark a parameter as read-only

* set a parameter as “invisible” (not exposed)

This process is used to expose Hub configuration through the Ul, automatically providing documentation in the we-
bapp without having to duplicate code, parameters and documentation. For more information, see class biothings.
ConfigurationParser, as well as existing configuration files in the different studios.

1.6. Services check

Let’s enter the container to check everything is running fine. Services may take a while, up to 1 min, before fully
started. If some services are missing, the troubleshooting section may help.

$ docker exec -ti studio /bin/bash

root@301e6a6419b9: /tmp# netstat -tnlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/
—Program name
(continues on next page)

56 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

tcp 0 0 0.0.0.0:7080 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:9000 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:27017 0.0.0.0:% LISTEN =

tcp 0 0 0.0.0.0:7022 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:9200 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN 166/
—nginx: master p

tcp 0 0 0.0.0.0:9300 0.0.0.0: LISTEN -

tcp 0 0 0.0.0.0:22 0.0.0.0:% LISTEN 416/sshd
tcp6 0 0 :::7080 388% LISTEN -

tcpb 0 0 :::7022 388% LISTEN -

tcpb 0 0 :::22 209% LISTEN 416/sshd

Specifically, BioThings Studio services’ ports are: 7080, 7022 and 8080.

2. Overview of BioThings Studio web application

BioThings Studio web application can simply be accessed using any browser pointing to port 8080. The home page
shows a summary of current data and recent updates. For now, it’s pretty quiet since we didn’t integrate any data yet.

B) % sotinsstu AHome S Soures &Bulds O AP 2o s P
DATASOURCE DOCUMENT (YET) BUILD

lack
What's new

Not much, nothing happened recently...

Let’s have a quick overview of the different elements accessible through the webapp. On the top left is the connection
widget. By default, BioThings Studio webapp will connect to the hub API through port 7080, the one running within
docker. But the webapp is a static web page, so you can access any other Hub API by configuring a new connection:

¢ BioThings Studio A Home

© Create new connection

EXISTING CONNECTIONS

Enter the Hub API URL, http://<host>:<port> (you can omit http://, the webapp will use that scheme by
default):

¥ Create a new connection

localhost: 7280

e | (D

6.1. BioThings Studio 57

BioThings SDK

The new connection is now listed and can be accessed quickly later simply by selecting it. Note the connection can be
deleted with the “trash” icon, but cannot be edited.

© Create new connection

EXISTING CONNECTIONS

b Biothings Hub =

Following are several tabs giving access to the main steps involved in building a BioThings API. We’ll get into those
in more details while creating our new API. On the right, we have different information about jobs and resources:

¥ oms |5 ons JRIMEIRVETTRNN « o] 00

Show all
j No command to show
oV

Fig. 1: Running commands are show in this popup, as well as as commands that have been running before, when
switching to “Show all”

G GO 2o s @) OO

Running Pending Max
0 0 18

No process to show

O

a1 BRIl oY

Fig. 2: When jobs are using parallelization, processes will show information about what is running and how much
resources each process takes. Notice we only have 1 process available, as we’re running a t2.medium instance which
only has 2 CPU, Hub has automatically assigned half of them.

3. Configuration

By clicking on the cog icon in the bar on the right, Hub configuration can be accessed. The configuration parameters,
documentation, sections are defined in python configuration files (see Configuration files). Specifically, if a parameter
is hidden, redacted or/and read-only, it’s because of how it was defined in the python configuration files.

All parameters must be entered in a JSON format. Ex: double quotes for strings, square brackets to define lists, etc. A
changed parameter can be saved using the “Save” button, available for each parameter. The “Reset” button can be used
to switch it back to the original default value that was defined in the configuration files.

Ex: Update Hub’s name

First enter the new name, for paramerer HUB_NAME. Because the value has changed, the “Save” button is available.

58 Chapter 6. Quick Start

BioThings SDK

TR o wse @) © 00

Running Pending Ready Max
0 0 1 18

O IE= ThreadPoolExecutor-0_0

BUILD

Fig. 3: BioThings Hub also uses threads for parallelization, their activity will be shown here. Number of queued jobs,
waiting for a free process or thread, is showned, as well as the total amount of memory the Hub is currenly using

CEBCRIBORTE = + =+ @ OO0

No new
notifications

0

Fig. 4: In this popup are shown all notifications coming from the Hub, in real-time, allowing to follow all jobs and
activity.

Page loaded

€2 -~

Fig. 5: The first circle shows the page loading activity. Gray means nothing active, flashing blue means webapp is
loading information from the Hub, and red means an error occured (error should be found either in notifications or by
opening the logs from the bottom right corner).

The next button with a cog icon gives access to the configuration and is described in the next section.

CEECRIBORIE : -+« @ 00

20

Fig. 6: Finally, a logo shows the websocket connection status (green power button means “connected”, red plug means
“not connected”).

6.1. BioThings Studio 59

BioThings SDK

@ Hub Configuration

Warning
A From this page, you can restart or stop the Hub, access and modify its internal configuraton in order to customize the
behavior and appearance. Be careful though, as incorrect values could lead to a non-working system.

1. General 2. Datasources 3. Folders 4. Index & Diff 5. Release 6. Job Manager 7. Hub Internals Misc

All values must be in JSON format

HUB_API_PORT 7080
API port

(value is read-only, it cannot be edited)

null

HUB_ICON

This is the default value

HUB_NAME
Hub name/icon url/version, for display purpose

This is the default value

B A e My vow motr

60 Chapter 6. Quick Start

BioThings SDK

Upon validation, a green check mark is shown, and because the value is not the default one, the “Reset” button is now
available. Clicking on it will switch the parameter’s value back to its original default one.

Note each time a parameter is changed, Hub needs to be restarted, as shown on the top.

Hub needs to restart to reflect changes I

4. Data plugin architecture and specifications

BioThings Studio allows to easily define and register datasources using data plugins. As of BioThings Studio 0.2b,
there are two different types of data plugin.

4.1. Manifest plugins

* a manifest.json file
* other python files supporting the declaration in the manifest.
The plugin name, that is, the folder name containing the manifest file, gives the name to the resulting datasource.

A manifest file is defined like this:

{

"version": "0.2",

"__metadata__" : { # optional
"url" : "<datasource website/url>",
"license_url" : "<url>",
"licence" : "<license name>",

"author" : {
"name" : "<author name>",
"url" : "<link to github's author for instance>"

h

i

"requires" : ["lib==1.3","anotherlib"],

"dumper" : {
"data_url" : "<url>" # (or list of url: ["<urll>", "<urll>"]),
"uncompress" : true|false, # optional, default to false
"release" : "<path.to.module>:<function_name>" # optional
"schedule" : "0 12 * * *" # optional

B

"uploader" : { # optional
"parser" : "<path.to.module>:<function_name>",
"on_duplicates" : "ignore|error|merge" # optional, default to "error"

}
]

i

6.1. BioThings Studio 61

BioThings SDK

or with multiple uploader

{
"version": "0.2",
"__metadata__" : { # optional
"url" : "<datasource website/url>",
"license_url" : "<url>",
"licence" : "<license name>",
"author" : {
"name" : "<author name>",
"url" : "<link to github's author for instance>"
}
i
"requires" : ["lib==1.3","anotherlib"],
"dumper" : {
"data_url" : "<url>" # (or list of url: ["<urll>", "<urll>"]),
"uncompress" : true|false, # optional, default to false
"release" : "<path.to.module>:<function_name>" # optional
"schedule" : "0 12 * * *" # optional
B
"uploaders" : [{ # optional
"parser" : "<path.to.module>:<function_name_1>",
"on_duplicates" : "ignore|error|merge" # optional, default to "error"
Fod
"parser" : "<path.to.module>:<function_name_2>",
"on_duplicates" : "ignore|error|merge" # optional, default to "error"
Fod
"parser" : "<path.to.module>:<function_name_3>",
"on_duplicates" : "ignore|error|merge" # optional, default to "error"
}
1
}

Note: it’s possible to only have a dumper section, without any uploader specified. In that case, the data plugin will
only download data and won’t provide any way to parse and upload data.

* aversion defines the specification version the manifest is using. Currently, version 0.2 should be used. This is
not the version of the datasource itself.

* an optional (but highly recommended) __metadata__ key provides information about the datasource itself, such
as a website, a link to its license, the license name. This information, when provided, is displayed in the /
metadata endpoint of the resulting APL

* a requires section, optional, describes dependencies that should be installed for the plugin to work. This uses
pip behind the scene, and each element of that list is passed to pip install command line. If one dependency
installation fails, the plugin is invalidated. Alternately, a single string can be passed, instead of a list.

* a dumper section specifies how to download the actual data:

— data_url specifies where to download the data from. It can be a URL (string) or a list of URLs
(list of strings). Currently supported protocols are http(s) and ftp. URLs must point to individ-
ual files (no wildcards), and only one protocol is allowed within a list of URLs (no mix of URLSs
using http and ftp are allowed). All files are download in a data folder, determined by config.
DATA_ARCHIVE_ROOT/<plugin_name>/<release>

62 Chapter 6. Quick Start

BioThings SDK

— uncompress: once data is downloaded, this flag, if set to true, will uncompress all supported archives found

in the data folder. Currently supported formats are: *.zip, *.gz, *.tar.gz (includes untar step)

schedule will trigger the scheduling of the dumper, so it automatically checks for new data on a regular
basis. Format is the same as crontabs, with the addition of an optional sixth parameter for scheduling by
the seconds.

Ex: * * * * * */10 will trigger the dumper every 10 seconds (unless specific use case, this is not recom-
manded).

For more information, Hub relies on aiocron for scheduling jobs.

release optionally specifies how to determine the release number/name of the datasource. By default, if not
present, the release will be set using:

% Last-Modified header for an HTTP-based URL. Format: YYYY-MM-DD

% ETag header for an HTTP-based URL if Last-Modified isn’t present in headers. Format: the actual
etag hash.

MDTM ftp command if URL is FTP-based.

If a list of URLSs is specified in data_url, the last URL is the one used to determine the release. If none of
those are available or satisfactory, a release section can be specified, and should point to a python module
and a function name following this format: module: function_name. Within this module, function has
the following signature and should return the release, as a string. set_release is a reserved name and
must not be used.

The example about release can be found at https://github.com/remoteeng00/FIRE.git

* In master branch, the manifest file does not contain release field, so you can see the “failed” when
dump the data source.

% When you checkout to the version “v2” (https://github.com/remoteeng00/FIRE/tree/v2) then you can
dump the data source.

def function_name(self):

code
return

self refers to the actual dumper instance of either biothings.hub.dataload.dumper.HTTPDumper or
biothings.hub.dataload.dumper.FTPDumper, depending on the protocol. All properties and methods from the
instance are available, specifically:

self.client, the actual underlying client used to download files, which is either a request.Session or a
ftplib.FTP instance, and should be preferred over initializing a new connection/client.

self.SRC_URLS, containing the list of URLs (if only one URL was specified in data_url, this will be a list of
one element), which is commonly used to inspect and possibly determine the release.

an uploader section specifies how to parse and store (upload):

— parser key defines a module and a function name within that module. Format: module: function_name.

Function has the following signature and returns a list of dictionary

(or yield dictionaries) containing at least a _id key reprensenting a unique identifier (string) for this document:

def function_name(data_folder):

code
yield {"_id":"..."}

6.1.

BioThings Studio 63

https://github.com/gawel/aiocron
https://github.com/remoteeng00/FIRE.git
https://github.com/remoteeng00/FIRE/tree/v2

BioThings SDK

data_folder is the folder containing the previously downloaded (dumped) data, it is automatically set to the latest
release available. Note the function doesn’t take an filename as input, it should select the file(s) to parse.

* on_duplicates defines the strategy to use when duplicated records are found (according to the _id key):
— error (default) will raise an exception if duplicates are found
— ignore will skip any duplicates, only the first one found will be store

— merge will merge existing document with the duplicated one. Refer to biothings.hub.dataload.
storage.MergerStorage class for more.

e parallelizer points to a module: function_name that can be used when the uploader can be parallelized. If
multiple input files exist, using the exact same parser, the uploader can be parallelized using that option. The
parser should take an input file as parameter, not a path to a folder. The parallizer function should return a list of
tuples, where each tuple corresponds to the list of input parameters for the parser. jobs is a reserved name and
must not be used.

* mapping points to a module: classmethod_name that can be used to specify a custom ElasticSearch mapping.
Class method must return a python dictionary with a valid mapping. get_mapping is a reserved name and must
not be used. There’s no need to add @classmethod decorator, Hub will take care of it. The first and only
argument is a class. Ex:

def custom_mapping(cls):
return {
"root_field": {
"properties": {
"subfield": {
"type": "text",

}

* If you want to use multiple uploader in you data plugin, you will need to use uploaders section, it’s a list of above
uploader.

Please see https://github.com/remoteeng00/pharmgkb/tree/pharmgkb_v5 for a example about multiple uploader defi-
nition.

Note: Please do not use both uploaders and uploader in your manifest file.

Note: Please see https://github.com/sirloon/mvcgi for a simple plugin definition. https://github.com/sirloon/
gwascatalog will show how to use the release key; https://github.com/remoteeng00/FIRE will demonstrate the par-
allelization in the uploader section.

64 Chapter 6. Quick Start

https://github.com/remoteeng00/pharmgkb/tree/pharmgkb_v5
https://github.com/sirloon/mvcgi
https://github.com/sirloon/gwascatalog
https://github.com/sirloon/gwascatalog
https://github.com/remoteeng00/FIRE

BioThings SDK

4.2. Advanced plugins

This type of plugins is more advanced in the sense that it’s plain python code. They typically come from a code
export of a manifest plugin but has slightly different (Following the A.5.2. Code export section, the exported python
code is placed in hub/dataload/sources/* folder, but advanced plugins are placed in the same folder with manifest
plugins at config.DATA_PLUGIN_FOLDER). The resulting python code defines dumpers and uploaders as python class,
inheriting from BioThings SDK components. These plugins can be written from scratch, they’re “advanced” because
they require more knowledge about BioThings SDK.

In the root folder (local folder or remote git repository), a __init__.py is expected, and should contain imports for
one dumper, and one or more uploaders.

An example of advanced data plugin can be found at https://github.com/sirloon/mvcgi_advanced.git. It comes from
“mvcgi” manifest plugin, where code was exported.

5. Hooks and custom commands

While it’s possible to define custom commands for the Hub console by deriving class biothings.hub.HubServer,
there’s also an easy way to enrich existing commands using hooks. A hook is a python file located in HOOKS_FOLDER
(defaulting to . /hooks/). When the Hub starts, it inspects this folder and “injects” hook’s namespace into its console.
Everything available from within the hook file becomes available in the console. On the other hand, hook can use any
commands available in the Hub console.

Hooks provide an easy way to “program” the Hub, based on existing commands. The following example defines
a new command, which will archive any builds older than X days. Code can be found at https://github.com/sirloon/
auto_archive_hook.git. File auto_archive.py should be copied into . /hooks/ folder. Upon restart, a new command
named auto_archive is now part of the Hub. It’s also been scheduled automatically using schedule(. . .) command
at the end of the hook.

The auto_archive function uses several existing Hub commands:
¢ 1smerge: when given a build config name, returns a list of all existing build names.
 archive: will delete underlying data but keep existing metadata for a given build name

e bm.build_info: bm isn’t a command, but a shortcut for build_manager instance. From this instance, we can
call build_info method which, given a build name, returns information about it, including the build_date
field we’re interested in.

Note: Hub console is actually a python interpreter. When connecting to the Hub using SSH, the connection “lands”
into that interpreter. That’s why it’s possible to inject python code into the console.

Note: Be careful. User-defined hooks can be conflicting with existing commands and may break the Hub. Ex: if a
hook defines a command “dump”, it will replace, and potentially break existing one!

6.1. BioThings Studio 65

https://github.com/sirloon/mvcgi_advanced.git
https://github.com/sirloon/auto_archive_hook.git
https://github.com/sirloon/auto_archive_hook.git

BioThings SDK

6.2 BioThings CLI

6.2.1 Introduction

The BioThings CLI (Command Line Interface) provides a set of conveniance command line tools for developers to
create and test data plugins locally. Compared to the option of setting up a local Hub running in docker containers,
the CLI further lowers the entry barrier by NOT requiring docker or any external databases installed locally. It is
particularly suitable for data plugin developers to build and test their data plugin independantly. When a data plugin is
ready, they can then pass the data plugin to a running BioThings Hub to build the data plugin into a BioThings APL.

This tutorial aims to provide a comprehensive guide to the BioThings CLI, covering its essential commands and func-
tionalities. We will explore a range of topics including installation, initial setup, and core features such as data plugin
dump, upload, inspect, and other utility commands. Additionally, we will delve into practical applications of the CLI,
demonstrating how to work with the local API server for data inspection and parser debugging.

6.2.2 Prerequisites

To use the BioThings CLI, you need to have Python installed on your system, specifically version 3.7 or higher.

Ensure that your Python version meets this requirement by running:

[python --version]

If you need to install or upgrade Python, visit the official Python website at https://www.python.org/downloads/ for the
latest version.

In addition to Python 3.7 or higher, having Git installed on your system is essential for using the BioThings CLI,
particularly if you need to clone repositories or manage version-controlled code.

To check if Git is installed on your system, run:

[git --version]

If Git is not installed, you can download and install it from the official Git website:
* For Windows and macOS: Visit Git’s official download page.

e For Linux: Use your distribution’s package manager (e.g., apt-get install git for Ubuntu, yum install git for
Fedora).

After installing Git, you can proceed with the setup and usage of the BioThings CLI.

6.2.3 Setting Up

Clone the tutorials repository on our BioThings group.

git clone https://github.com/biothings/tutorials.git
cd tutorials
git checkout pharmgkb_v5

Now we will need to install the requirements to run our BioThings CLI. We will first create a virtual environment and
then install a BioThings Hub CLI environment.

66 Chapter 6. Quick Start

https://www.python.org/downloads/
https://git-scm.com/downloads

BioThings SDK

python -m venv .venv
source ./.venv/bin/activate
pip install "biothings[cli]"

6.2.4 Run/Test a data plugin

Let’s check out our command line inputs. Here is a quick summary of every command we will be using in this tutorial.
¢ biothings-cli dataplugin dump: Download source data files to local
* biothings-cli dataplugin list: Listing dumped files or uploaded sources

* biothings-cli dataplugin upload: Convert downloaded data from dump step into JSON documents and
upload the to the source database

* biothings-cli dataplugin serve: serve command runs a simple API server for serving documents from
the source database.

* biothings-cli dataplugin clean: Delete all dumped files and drop uploaded sources tables

If you have any further questions on what other options are available in our biothings-cli. You can check out more
using the --help or -h flag on any attribute. Examples:

* biothings-cli --help
¢ biothings-cli dataplugin --help
¢ biothings-cli dataplugin dump -h

The BioThings CLI can only be used for a manifest based plugin. Looking at our manifest file, we are using a JSON
based manifest with multiple uploaders. Check out our manifest section to know more about the different types of
manifest files that can be used with our Hub.

{
"version": "0.3",
"requires": [
"pandas",
"numpy"
g
"dumper": {

"data_url": [
"https://s3.pgkb.org/data/annotations.zip",
"https://s3.pgkb.org/data/druglLabels.zip",
"https://s3.pgkb.org/data/occurrences.zip"

P

"uncompress': true

i
"uploaders": [
{
"name": "annotations",
"parser": "parser:load_annotations",
"mapping": "parser:custom_annotations_mapping",
"on_duplicates": "error"
i
{
"name": "druglabels",

(continues on next page)

6.2. BioThings CLI 67

studio.html#manifest-plugins

BioThings SDK

(continued from previous page)

"parser": "parser:load_druglabels",
"on_duplicates": "error"

g

{
"name": "occurrences",
"parser": "parser:load_occurrences",
"on_duplicates": "error"

}

* version specifies the manifest version (it’s not the version of the datasource itself) and tells the CLI what to
expect from the manifest.

 parser uses pandas and numpy library, we declare that dependency in requires section.

* the dumper section declares where the input files are, using data_url key. In the end, we’ll use 3 different files
so a list of URLs is specified there. A single string is also allowed if only one file (ie. one URL) is required.
Since the input file is a ZIP file, we first need to uncompress the archive, using uncompress : true. We will
see the uncompressed contents shortly after dumping.

* the uploaders section tells the CLI how to upload JSON documents to local SQLite database. parser
has a special format, module_name: function_name. For example the first parsing function is named
load_annotations and can be found in parser.py module. "on_duplicates" : "error" tells the CLI
to raise an error if we have documents with the same _id (this would mean we have a bug in our parser).

Now we will run the dump process using the dump command:

[biothings—cli dataplugin dump J

(.venv) (base) jalin@acBook-Pro tutorials % biothings-cli dataplugin dump
IF Install requirement 'pandas
Requirement already satisfied: pandas in ./.venv/lib/python3.11/site-packages (2.1.4)
Requirement already satisfied: numpy<2,>=1.23.2 e G el (G +c|ick):kages (from pandas) (1.26.3)
Requirement already satisfied: python-dateutil> P -te-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.4)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
INFO Install requirement 'numpy’
Requirement already satisfied: numpy in ./.venv/lib/python3.11/site-packages (1.26.3)
I Downloading remote data from "https://s3.pg org/data/annotations.zip"...

Downloaded locally as ".biothings_hub/archive/2024-01-05/annotations.z

Downloading remote data from "https g/data/drug els

Downloaded locally as ".biothings_hub/archive/2024-01-05/drugLabe

Downloading remote data from "https://s3.pgkb.org/data/occurrence

Downloaded locally as ".biothings_hub/arch /2024-01-05/occurren

Uncompress all archive files in '.biothin wub/archive/2024-01-05

unzipping '.biothings_hub/archive/20 01-05/occurrences.zip’

done unzipping '.biothings_hub/archive/2024-01-05/occurrences.zip’

unzipping '.biothings_hub/archive/2024-01-05/drugLabels.zip

done unzipping '.biothings_hub/archive/2024-01-05/druglLabe

unzipping '.biothings_hub/archive/2024-01 notations.zip'

done unzipping '.biothings_hub/archive/2024-01-05/annotations.zip’

Success! #

p
Source: tutorials

Data Folder: .biothings_hub/archive/2024-01-05:
var_fa_ann.tsv
study_parameters.tsv
occurrences.zip
var_pheno_ann. tsv
drugLabels. tsv

VERSIONS. txt

var_drug_ann. tsv
CREATED_2021-03-05. txt
clinical_ann_metadata.tsv
clinical_ann_history.tsv
drugLabels.zip

clinical_ann.tsv
CLINICAL_ANNOTATIONS_README. pdf
drugLabels.byGene. tsv
CREATED_2024-01-05. txt
VARIANT_ANNOTATIONS_README. pdf
LICENSE. txt

occurrences. tsv

annotations.zip

README. pdf

68 Chapter 6. Quick Start

BioThings SDK

There should be a successful dump along with the dump contents in the .biothings_hub/archive/<DATE_TIME>
directory.

Note: Remember since we set uncompress as true in the manifest the .biothings_hub/archive/<DATE_TIME>
will contain both the zip files and the uncompressed contents.

In our .biothings_hub directory, there should be a SQLite database that was created called biothings_hubdb.
Let’s take a look at the contents using biothings-cli dataplugin list --hubdb.

Hubdb
Collection: data_plugin
[{'_id': 'tutorials’',
'download': {'data_folder': '.'},
'plugin': {'active': True,
'loader': 'manifest',
'type': 'local',
‘url': 'local://tutorials'}}]
Collection: src_dump
[{'_id': 'tutorials’,
'download': {'data_folder': '.biothings_hub/archive/2024-01-05"',
'last_success': '2024-01-19T716:59:03.015821-08:00"',
'logfile': None,
'release': '2024-01-05',
'started_at': '2024-01-19T16:59:03.015821-08:00",
'status': 'success',
‘time': '1.47s'}}]

We can see two collections/tables that have been created during our dump.

The data_plugin collection contains the information of our “tutorial” dataplugin. The each entry within the
data_plugin contains:

 _id: name of the plugin
¢ download.data_folder: where the plugin is located
* plugin.active: if the plugin is still being used

* plugin.loader: type of plugin, at the moment, we can only using manifest type plugins for the cli, but more
features will be updated in the future to include other types

* plugin.type: local vs remote repository
¢ plugin.url: plugin source folder
The src_dump collection contains the information of our dumps:
 _id: name of the dataplugin
* download.data_folder: location of the dumped contents
» download.last_success: datetime of last successful dump
* download.logfile: location of generated log files
* download.release: name of release
* download.started_at: datetime of when the dump was started
* download.status: status of the dump

* download.time: how long the dump process took

6.2. BioThings CLI 69

BioThings SDK

Now that our dumper has been populated, we can continue to the upload process. Let’s take a look at the upload
command.

(.venv) (base) jalin@acBook—Pro tutorials % biothings—cli dataplugin upload -h

Usage: biothings—cli dataplugin upload [OPTIONS]

Convert downloaded data from dump step into JSON documents and upload the to the source database

—-batch-limit INTEGER The maximum number of batches that should be uploaded. Batch size is 1000 docs
——help -h Show this message and exit.

Since our data is small, we do not need to use the --batch-1limit tag for testing. Instead, we can directly run:

[biothings—cli dataplugin upload]

Success! #
Upload

Source: tutorials
DB path: /Users/jalin/Desktop/Scripps_Work/tutorials/.biothings_hub/.data_src_database

- Database: .data_src_database
— Collections:
annotations

druglabels
occurrences
= Archived collections:
annotations_archive_20240122_7GilcHml
druglabels_archive_20240122_IdSDxGEY
occurrences_archive_20240122_xsUsnlls
— Temporary collections:

After a successful upload, the SQLite database .biothings_hub/.data_src_database is created with three dif-
ferent collections. Each collection matches the corresponding uploader in our manifest file: annotations, druglabels,

occurences.

To view our data, we will need to use the serve command.

[biothings—cli dataplugin serve J

70 Chapter 6. Quick Start

BioThings SDK

http://localhost:9999/annotations

& Get a document by id:
http://localhost:9999/annotations/<doc_id>
Examples:
http://localhost:9999/annotations/PA25911
http://localhost:9999/annotations/PA33129
& Query documents by fields:
http://localhost:9999/annotations?q=<query>
Examples:
http://localhost:9999/annotations?from=0&size=10
http://localhost:9999/annotations?q=annotations.significance:yes
http://localhost:9999/annotations?q=annotations.variant:rs12046844 AND annotations.annotation_id:1184086254

http://localhost:9999/druglabels

& Get a document by id:
http://localhosti9999/druglabels/<doc_id>
Examples:
http://localhost:9999/druglabels/PA27006
http://localhost:9999/druglabels/PA134979668
& Query documents by fields:
http://localhost:9999/druglabels?g=<query>
Examples:
http://localhost:9999/druglabels?from=0&size=10
http://localhost:9999/druglabels?q=drug_labels.id:PA166127702
http://localhost:9999/druglabels?qg=drug_labels.id:PA166104845 AND drug_labels.id:PA166104845

http://localhost:9999/occurrences

& Get a document by id:
http://localhost:9999/occurrences/<doc_id>
Examples:
http://localhost:9999/occurrences/PA27974
http://localhost:9999/occurrences/PA142670475
& Query documents by fields:
http://localhost:9999/0ccurrences?q=<query>
Examples:
http://localhost:9999/occurrences?from=08&size=10
http://localhost:9999/occurrences? ccurrences.object_type:Gene
http://localhost:9999/0ccurrences?q=occurrences.object_type:Gene AND occurrences.object_type:Gene

Found collection: annotations; counting...Done (1018 documents)

Once we have served the data, there should be 3 endpoints that are created. Go to http://localhost:9999/ to view all of
the available endpoints. For each endpoint we can query by id:

¢ http://localhost:9999/annotations/<DOC_ID>
or field:
* http://localhost:9999/annotations?q=<QUERY >

Try out a few of the examples for yourself listed in the serve output!

Note: You may have noticed that we are able to serve occurences and druglabels without registering a mapping. The
reason is because BioThings CLI does not check for correct mappings. If you want to know if your mapping is correctly
registered, you will have to use our BioThings Studio.

To review we can use the biothings-cli dataplugin list command. Using this command we can see all of our
dump and upload information.

6.2. BioThings CLI 71

http://localhost:9999/
http://localhost:9999/annotations/\T1\textless {}DOC_ID\T1\textgreater {}
http://localhost:9999/annotations?q=\T1\textless {}QUERY\T1\textgreater {}
studio.html

BioThings SDK

(.venv) (base) jalin@acBook-Pro tutorials % biothings-cli dataplugin list
Install requirement 'pandas
Requirement already satisfied: pandas in ./.venv/lib/python3.11/site-packages (2.1.4)
Requirement already satisfied: numpy<2,>=1.23.2 in ./.venv/lib/python3.11/site-packages (from pandas) (1.26.3)
Requirement already satisfied: python-dateutil>=2.8.2 in ./.venv/lib/python3.11/site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.4)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Install requirement 'numpy'’
Requirement already satisfied: numpy in ./.venv/lib/python3.11/site-packages (1.26.3)
Dump
Source: tutorials
Data Folder: .biothings_hub/archive/2024-01-05:
- var_fa_ann.tsv
- study_parameters. tsv
- occurrences.zip
- var_pheno_ann. tsv
druglLabels.tsv
VERSIONS. txt
var_drug_ann. tsv
CREATED_2021-83-05. txt
clinical_ann_metadata. tsv
clinical_ann_history.tsv
drugLabels.zip
clinical_ann.tsv
CLINICAL_ANNOTATIONS_README.pdf
druglLabels.byGene.tsv
CREATED_2024-01-05. txt
VARIANT_ANNOTATIONS_README.pdf
LICENSE. txt
occurrences. tsv
annotations.zip
README. pdf

Upload
Source: tutorials
DB path: /Users/jalin/Desktop/Scripps_Work/tutorials/.biothings_hub/.data_src_database
— Database: .data_src_database
- Collections:
annotations
druglabels
occurrences
- Archived collections:
annotations_archive_20240122_7GilcHml
druglabels_archive_20240122_TdSDxGEY
occurrences_archive_20240122_xsUsnlls
— Temporary collections

(.venv) (base) jalin@acBook-Pro tutorials % I

Once we are finished with our plugin we can delete our unused data with biothings-cli dataplugin clean
--all. This will delete all the dumped files and drop all the uploaded source data.

72 Chapter 6. Quick Start

BioThings SDK

(.venv) (base) jalin@acBook-Pro tutorials % biothings-cli dataplugin clean —-all
Install requirement 'pandas

Requirement already satisfied: pandas in ./.venv/lib/python3.11/site-packages (2.1.4)

Requirement already satisfied: numpy<2,>=1.23.2 in ./.venv/lib/python3.11/site-packages (from pandas) (1.26.3)

Requirement already satisfied: python-dateutil>=2.8.2 in ./.venv/lib/python3.11/site—packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.3.postl)

Requirement already satisfied: tzdata>=2022.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.4)

Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Install requirement 'numpy’

Requirement already satisfied: numpy in ./.venv/lib/python3.11/site-packages (1.26.3)

There are all files dumped by tutorials:

var_fa_ann.tsv

study_parameters.tsv

occurrences.zip

var_pheno_ann. tsv

drugLabels.tsv

VERSIONS. txt

var_drug_ann.tsv

CREATED_2021-03-05.txt

clinical_ann_metadata.tsv

clinical_ann_history.tsv

druglLabels.zip

clinical_ann.tsv

CLINICAL_ANNOTATIONS_README.pdf

druglLabels.byGene.tsv

CREATED_2024-01-05.txt

VARIANT_ANNOTATIONS_README.pdf

LICENSE. txt

occurrences.tsv

annotations.zip

README. pd f

Do you want to delete them? [y/N]l: y

Deleted!

There are all sources uploaded by tutorials:

annotations_archive_20240122_7GilcHml

annotations

druglabels_archive_20240122_IdSDxGEY

druglabels

occurrences_archive_20240122_ xsUsnlls

occurrences

Do you want to drop them? [y/N]: y

All collections are dropped!

We can check if all the data is deleted using biothings-cli dataplugin list.

(.venv) (base) jalin@lacBook-Pro tutorials % biothings-cli dataplugin list
INF Install requirement 'pandas
Requirement already satisfied: pandas in ./.venv/lib/python3.11/site-packages (2.1.4)
i already satisfied: numpy<2,>=1.23.2 in ./.venv/lib/python3.11/site-packages (from pandas) (1.26.3)
already satisfied: python-dateutil>=2.8.2 in ./.venv/lib/python3.11/site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in ./.venv/lib/python3.11/site-packages (from pandas) (2023.4)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
I Install requirement 'numpy’
Requirement already satisfied: numpy in ./.venv/lib/python3.11/site-packages (1.26.3)
Dump
Source: tutorials
Data Folder: .biothings_hub/archive/2024-01-05:
Empty file!

Upload

Source: tutorials

DB path: /Users/jalin/Desktop/Scripps_Work/tutorials/.biothings_hub/.data_src_database
- Database: .data_src_database

Empty source!

6.2.5 In Summary
We have successfully set up a BioThings CLI environment and created a test environment from a flat file using only the
CLI. Here is what we have achieved:

 Create a data plugin: by defining a data plugin, we pointed the BioThings CLI to where the remote data is and
which parser functions to process the remote data

e Dump remote data: we used the BioThings CLI to dump the data locally

 Parse remote data: we also generated an uploader to run the parser and store resulting JSON documents into a
SQLite database

* Run the test APIL: we served the resulting data with a simple API server from the source database.

6.2. BioThings CLI 73

BioThings SDK

6.2.6 Next Steps

* Deploy to production:

— After you successfully created and tested your data plugin locally, you are ready to host your data plugin as
a BioThings API in the production environment (e.g. AWS cloud environment).

— Please contact the Manager of one of our managed BioThings Hubs. The rest of the deployment process
will be handled by the managed Hub.

* Managing multiple plugins:
If you need to manage multiple data plugins locally, there are different options to organize them:

— Option 1: Create a new directory for every plugin and use the biothings-cli dataplugin command to
manage one data plugin at a time as we described in the tutorial above.

— Option 2: Create a parent directory and organize multiple data plugins in subdirectories. You can then run
the biothings-cli dataplugin-hub command at the parent directory as a controller to manage all data
plugins, with almost identical subcommands (e.g. dump, upload etc.) described above.

— Option 3: Follow our BioThings Studio Tutorial to install a full-featured web UI to manage multiple data
plugins, which is the same interface we use to manage a BioThings dataplugin hub in our production envi-
ronment.

6.3 BioThings Standalone

This step-by-step guide shows how to use Biothings standalone instances. Standalone instances are based on Docker
containers and provide a fully pre-configured, ready-to-use Biothings API that can easily be maintained and kept up-
to-date. The idea is, for any user, to be able to run his/her own APIs locally and fulfill differents needs:

* keep all API requests private and local to your own server
* enrich existing and publicly available data found on our APIs with some private data

* run API on your own architecture to perform heavy queries that would sometimes be throttled out from online
services

6.3.1 Quick Links

If you already know how to run a BioThings standalone instance, you can download the latest avaiable Docker images
from the following tables.

Warning: Some data sources, managed and served by standalone instances (production, demo and old), have
restricted licenses. Therefore these standalone instances must not be used for other than non-profit purposes. By
clicking on the following links, you agree and understand these restrictions. If you’re a for-profit company and
would like to run a standalone instance, please contact us.

Note: Images don’t contain data but are ready to download and maintain data up-to-date running simple commands
through the hub.

74 Chapter 6. Quick Start

studio.html
mailto:help@biothings.io

BioThings SDK

List of standalone instances

£ ViyGenalnio

Production and old data require at least 30GiB disk space.

Production Demo Old

Contact us Download Download

£ iy Varientinte

Production and old data require at least 2TiB disk space.

Production Demo Old

Contact us Download Download

@

Production and old data require at least 150Gib disk space.

Production Demo Old

Contact us Download Soon !

6.3.2 Prerequisites

Using standalone instances requires to have a Docker server up and running, some basic knowledge about commands
to run and use containers. Images have been tested on Docker >=17. Using AWS cloud, you can use our public AMI
biothings_demo_docker (ami-44865e3c in Oregon region) with Docker pre-configured and ready for standalone
demo instances deployment. We recommend using instance type with at least 8GiB RAM, such as t2.large. AMI
comes with an extra 30GiB EBS volume, which should be enough to deploy any demo instances.

Alternately, you can install your own Docker server (on recent Ubuntu systems, sudo apt-get install docker.io
is usually enough). You may need to point Docker images directory to a specific hard drive to get enough space, using
-g option:

/mnt/docker points to a hard drive with enough disk space
sudo echo 'DOCKER_OPTS="-g /mnt/docker"' >> /etc/default/docker
restart to make this change active

sudo service docker restart

Demo instances use very little disk space, as only a small subset of data is available. For instance, myvariant demo
only requires ~10GiB to run with demo data up-to-date, including the whole Linux system and all other dependencies.

6.3. BioThings Standalone 75

mailto:help@mygene.info
http://biothings-containers.s3-website-us-west-2.amazonaws.com/demo_mygene/demo_mygene.docker
http://biothings-containers.s3-website-us-west-2.amazonaws.com/old_mygene/old_mygene.docker
mailto:help@myvariant.info
http://biothings-containers.s3-website-us-west-2.amazonaws.com/demo_myvariant/demo_myvariant.docker
http://biothings-containers.s3-website-us-west-2.amazonaws.com/old_myvariant/old_myvariant.docker
mailto:help@mygene.info
http://biothings-containers.s3-website-us-west-2.amazonaws.com/demo_mychem/demo_mychem.docker

BioThings SDK

Demo instances provide a quick and easy way to setup a running APIs, without having to deal with some advanced
system configurations.

For deployment with production or old data, you may need a large amount of disk space. Refer to the Quick Links section
for more information. Bigger instance types will also be required, and even a full cluster architecture deployment. We’ll
soon provide guidelines and deployment scripts for this purpose.

6.3.3 What you’ll learn

Through this guide, you’ll learn:
* how to obtain a Docker image to run your favorite API
* how to run that image inside a Docker container and how to access the web API
* how to connect to the hub, a service running inside to container used to interact with the API systems

* how to use that hub, using specific commands, in order to perform update and keep data up-to-date

6.3.4 Data found in standalone instances

All BioThings APIs (mygene.info, myvariant.info, ...) provide data release in different flavors:

* Production data, the actual data found on live APIs we, the BioThings team at SuL.ab, are running and keeping
up-to-date on a regular basis. Please contact us if you're interested in obtaining this type of data.

* Demo data, a small subset of production data, publicly available
* Old production data, an at least one year old production dataset (full), publicly available

The following guide applies to demo data only, though the process would be very similar for other types of data flavors.

6.3.5 Downloading and running a standalone instance

Standalone instances are available as Docker images. For the purpose of this guide, we’ll setup an instance running
mygene API, containing demo data. Links to standalone demo Docker images, can be found in Quick links at the
beginning of this guide. Use one of these links, or use this direct link to mygene’s demo instance, and download the
Docker image file, using your favorite browser or wget:

$ wget http://biothings-containers.s3-website-us-west-2.amazonaws.com/demo_mygene/demo_
—mygene.docker

You must have a running Docker server in order to use that image. Typing docker ps should return all running
containers, or at least an empty list as in the following example. Depending on the systems and configuration, you may
have to add sudo in front of this command to access Docker server.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ar
—STATUS PORTS NAMES

Once downloaded, the image can be loaded into the server:

$ docker image load < demo_mygene.docker

$ docker image list

REPOSITORY TAG s
—IMAGE ID CREATED SIZE

(continues on next page)

76 Chapter 6. Quick Start

http://sulab.org
http://biothings-containers.s3-website-us-west-2.amazonaws.com/demo_mygene/demo_mygene.docker

BioThings SDK

(continued from previous page)

demo_mygene latest o
- 15d6395e780c 6 weeks ago 1.78GB

Image is now loaded, size is ~1.78GiB, it contains no data (yet). An docker container can now be instantiated from that
image, to create a BioThings standalone instance, ready to be used.

A standalone instance is a pre-configured system containing several parts. BioThings hub is the system used to interact
with BioThings backend and perform operations such as downloading data and create/update ElasticSearch indices.
Those indices are used by the actual BioThings web API system to serve data to end-users. The hub can be accessed
through a standard SSH connection or through REST API calls. In this guide, we’ll use the SSH server.

A BioThings instance expose several services on different ports:
* 80: BioThings web API port
* 7022: BioThings hub SSH port
» 7080: BioThings hub REST API port
* 9200: ElasticSearch port

We will map and expose those ports to the host server using option -p so we can access BioThings services without
having to enter the container (eg. hub ssh port here will accessible using port 19022).

$ docker run --name demo_mygene -p 19080:80 -p 19200:9200 -p 19022:7022 -p 19090:7080 -d.
—.demo_mygene

Note: Instance will store ElasticSearch data in ~var/lib/elasticsearch/ directory, and downloaded data and logs in /
data/ directory. Those two locations could require extra disk space, if needed Docker option -v can be used to mount
a directory from the host, inside the container. Please refer to Docker documnentation.

Let’s enter the container to check everything is running fine. Services may take a while, up to 1 min, before fully
started. If some services are missing, the troubleshooting section may help.

$ docker exec -ti demo_mygene /bin/bash

root@a6a6812e2969: /tmp# netstat -tnlp
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/
—Program name

tcp 0 0 0.0.0.0:7080 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:7022 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 25/nginx
tcp 0 0 127.0.0.1:8881 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8882 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8883 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8884 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8885 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8886 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8887 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN -
tcpb 0 0 :::7080 2ogw LISTEN -
tcp6 0 0 :::7022 3Rt LISTEN -
tcpb 0 0 :::9200 A LISTEN =
tcpb 0 0 :::9300 Saak LISTEN -

6.3. BioThings Standalone 77

BioThings SDK

We can see the different BioThings services’ ports: 7080, 7022 and 7080. All 888x ports correspond to Tornado
instances running behing Nginx port 80. They shouldn’t be accessed directly. Ports 9200 and 9300 are ElasticSearch
standard ports (9200 one can be used to perform queries directly on ES, if needed)

At this point, the standalone instance is up and running. No data has been downloaded yet, let’s see how to populate
the BioThings API using the hub.

6.3.6 Updating data using Biothings hub

If the standalone instance has been freshly started, there’s no data to be queried by the API. If we make a API call, such
as fetching metadata, we’ll get an error:

from Docker host
$ curl -v http://localhost:19080/metadata
Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 19080 (#0)
GET /metadata HTTP/1.1
Host: localhost:19080
User-Agent: curl/7.47.0
Accept: */*

HTTP/1.1 500 Internal Server Error
Date: Tue, 28 Nov 2017 18:19:23 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 93

Connection: keep-alive

Server: TornadoServer/4.5.2

*ANANANANANANAV V V VYV

Connection #0 to host localhost left intact

This 500 error reflects a missing index (ElasticSearch index, the backend used by BioThings web API). We can have a
look at existing indices in ElasticSearch:

from Docker host
$ curl http://localhost:19200/_cat/indices
yellow open hubdb 5 1 ® ® 795b 795b

There’s only one index, hubdb, which is an internal index used by the hub. No index containing actual biological
data. ..

BidThings hub is a service running inside the instance, it can be accessed through a SSH connection, or using REST
API calls. For the purpose of the guide, we’ll use SSH. Let’s connect to the hub (type yes to accept the key on first
connection):

from Docker host

$ ssh guest@localhost -p 19022

The authenticity of host '[localhost]:19022 ([127.0.0.1]:19022)' can't be established.
RSA key fingerprint is SHA256:j63IEgXc3yJqgvOF4wa35aGliH5YQux84xxABew5ASO.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[localhost]:19022' (RSA) to the list of known hosts.

Welcome to Auto-hub, guest!
hub>

78 Chapter 6. Quick Start

BioThings SDK

We’re now connected to the hub, inside a python shell where the application is actually running. Let’s see what com-
mands are available:

Warning: the hub console, though accessed through SSH, is not a Linux shell (such as bash), it’s a python
interpreter shell.

hub> help()
Available commands:

versions
check

info
download
apply
step_update
update

help

Type: 'help(command)' for more

» versions() will display all available data build versions we can download to populate the API
e check() will return whether a more recent version is available online
e info () will display current local API version, and information about the latest available online

* download() will download the data compatible with current local version (but without populating the Elastic-
Search index)

* apply() will use local data previously downloaded to populate the index

e step_update() will bring data release to the next one (one step in versions), compatible with current local
version

* update() will bring data to the latest available online (using a combination of download and apply calls)

Note: update() is the fastest, easiest and preferred way to update the API. download, apply, step_update are
available when it’s necessary to bring the API data to a specific version (not the latest one), are considered more
advanced, and won’t be covered in this guide.

Note: Because the hub console is actually a python interpreter, we call the commands using parenthesis, just like
functions or methods. We can also pass arguments when necessary, just like standard python (remember: it is python...)

Note: After each command is typed, we need to press “enter” to get either its status (still running) or the result

Let’s explore some more.

hub> info()
[2] RUN {0.0s} info()
hub>

(continues on next page)

6.3. BioThings Standalone 79

BioThings SDK

(continued from previous page)
[2] OK info(): finished
>>> Current local version: 'None'
>>> Release note for remote version 'latest':
Build version: '20171126'

Previous build version: '20171119°'
Generated on: 2017-11-26 at 03:11:51

B T R e T TR T e
Gt

| Updated datasource | prev. release | new release | prev. # of docs | new # of.
—docs |

e o o o o
Gt

| entrez.entrez_gene | 20171118 | 20171125 | 10,003 | 10,
—003 |

| entrez.entrez_refseq | 20171118 | 20171125 | 10,003 | 10,
003 |

| entrez.entrez_unigene | 20171118 | 20171125 | 10,003 | 10,
—003 |

| entrez.entrez_go | 20171118 | 20171125 | 10,003 | 10,
—003 |

| entrez.entrez_genomic_pos | 20171118 | 20171125 | 10,003 | 10,
003 |

| entrez.entrez_retired | 20171118 | 20171125 | 10,003 | 10,
—003 |

| entrez.entrez_accession | 20171118 | 20171125 | 10,003 | 10,
003 |

| generif | 20171118 | 20171125 | 10,003 | 10,
003 |

| uniprot | 20171025 | 20171122 | 10,003 | 10,
—003 |

B R o o o
oot

Overall, 9,917 documents in this release
0 document(s) added, ©® document(s) deleted, 130 document(s) updated

We can see here we don’t have any local datarelease (Current local version: 'None'), whereas the latest online
(at that time) is from November 26th 2017. We can also see the release note with the different changes involved in the
release (whether it’s a new version, or the number of documents that changed).

hub> versions()
[1] RUN {0.0s} versions()

hub>

[1] OK versions(): finished

version=20171003 date=2017-10-05T09:47:59.413191 type=full
version=20171009 date=2017-10-09T14:47:10.800140 type=full

version=20171009.20171015 date=2017-10-19T11:44:47.961731 type=incremental
version=20171015.20171022 date=2017-10-25T13:33:16.154788 type=incremental
version=20171022.20171029 date=2017-11-14T10:34:39.445168 type=incremental
version=20171029.20171105 date=2017-11-06T10:55:08.829598 type=incremental

(continues on next page)

80 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

version=20171105.20171112 date=2017-11-14T10:35:04.832871 type=incremental
version=20171112.20171119 date=2017-11-20T07:44:47.399302 type=incremental
version=20171119.20171126 date=2017-11-27T10:38:03.593699 type=incremental

Data comes in two distinct types:
« full: this is a full data release, corresponding to an ElasticSearch snapshot, containing all the data

* incremental : this is a differential/incremental release, produced by computing the differences between two
consecutives versions. The diff data is then used to patch an existing, compatible data release to bring it to the
next version.

So, in order to obtain the latest version, the hub will first find a compatible version. Since it’s currently empty (no
data), it will use the first full release from 20171009, and then apply incremental updates sequentially (20171009.
20171015, then 20171015.20171022, then 20171022.20171029, etc... up to 20171119.20171126).

Let’s update the API:

hub> update()

[3] RUN {0.0s} update()
hub>

[3] RUN {1.3s} update()
hub>

[3] RUN {2.07s} update()

After a while, the API is up-to-date, we can run command info () again (it also can be used to track update progress):

hub> info()

[4] RUN {0.0s} info()

hub>

[4] OK info(): finished

>>> Current local version: '20171126'

>>> Release note for remote version 'latest':
Build version: '20171126'

Previous build version: '20171119°'
Generated on: 2017-11-26 at 03:11:51

B o o o o
oot

| Updated datasource | prev. release | new release | prev. # of docs | new # of.,
—docs |

B T o o o e
s

| entrez.entrez_gene | 20171118 | 20171125 | 10,003 | 10,
003 |

| entrez.entrez_refseq | 20171118 | 20171125 | 10,003 | 10,
—003 |

| entrez.entrez_unigene | 20171118 | 20171125 | 10,003 | 10,
003 |

| entrez.entrez_go | 20171118 | 20171125 | 10,003 | 10,
003 |

| entrez.entrez_genomic_pos | 20171118 | 20171125 | 10,003 | 10,
—003 |

(continues on next page)

6.3. BioThings Standalone 81

BioThings SDK

(continued from previous page)

| entrez.entrez_retired | 20171118 | 20171125 | 10,003 | 10,
003 |
| entrez.entrez_accession | 20171118 | 20171125 | 10,003 | 10,
—003 |
| generif | 20171118 | 20171125 | 10,003 | 10,
—003 |
| uniprot [20171025 | 20171122 | 10,003 | 10,
003 |
B T R e T TR T e
-——+

Overall, 9,917 documents in this release
0 document(s) added, ® document(s) deleted, 130 document(s) updated

Local version is 20171126, remote is 20171126, we’re up-to-date. We can also use check():

hub> check()

[5] RUN {0.0s} check()
hub>

[5] OK check(): finished
Nothing to dump

Nothing to dump means there’s no available remote version that can be downloaded. It would otherwise return a
version number, meaning we would be able to update the API again using command update().

Press Control-D to exit from the hub console.

Querying ElasticSearch, we can see a new index, named biothings_current, has been created and populated:

$ curl http://localhost:19200/_cat/indices
green open biothings_current 1 0 14903 0 10.3mb 10.3mb
yellow open hubdb 51 2 0 11.8kb 11.8kb

We now have a populated API we can query:

from Docker host

get metadata (note the build_version field)
$ curl http://localhost:19080/metadata
{

"app_revision": "672d55f2deab4c7c0e9b7249d22ccca58340a884",
"available_fields": "http://mygene.info/metadata/fields",
"build_date": "2017-11-26T02:58:49.156184",
"build_version": "20171126",

"genome_assembly": {

"rat": "rn4",
"nematode": "cel®",
"fruitfly": "dm3",
"pig": "susScr2",
"mouse": "mml0",
"zebrafish": "zv9",
"frog": "xenTro3",

"human": "hg38"
g

(continues on next page)

82 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

annotation endpoint
$ curl http://localhost:19080/v3/gene/10177?fields=alias,ec
{
"_id": "1017",
"_score": 9.268311,
"alias": [
"CDKN2",
"p33(CDK2)"
g
"ec": "2.7.11.22",
"name": "cyclin dependent kinase 2"

query endpoint

$ curl http://localhost:19080/v3/query?q=cdk?2
{

"max_score": 310.69254,

"took": 37,

"total": 10,

"hits": [

{
"_id": "1017",

"_score": 310.69254,
"entrezgene": 1017,

"name": "cyclin dependent kinase 2",
"symbol": "CDK2",
"taxid": 9606
i
{
"_id": "12566",
"_score": 260.58084,
"entrezgene": 12566,
"name": "cyclin-dependent kinase 2",
"symbol": "Cdk2",
"taxid": 10090
i

6.3.7 BioThings API with multiple indices

Some APIs use more than one ElasticSearch index to run. For instance, myvariant.info uses one index for hg19 assem-
bly, and one index for hg38 assembly. With such APIs, the available commands contain a suffix showing which index
(thus, which data release) they relate to. Here’s the output of help() from myvariant’s standalone instance:

hub> help()
Available commands:

versions_hg19
check_hg19
info_hg19

(continues on next page)

6.3. BioThings Standalone 83

BioThings SDK

(continued from previous page)

download_hg19
apply_hg19
step_update_hg19
update_hg19
versions_hg38
check_hg38
info_hg38
download_hg38
apply_hg38
step_update_hg38
update_hg38

help

For instance, update() command is now available as update_hg19() and update_hg38() depending on the as-
semlby.

6.3.8 Troubleshooting

We test and make sure, as much as we can, that standalone images are up-to-date and hub is properly running for each
data release. But things can still go wrong. ..

First make sure all services are running. Enter the container and type netstat -tnlp, you should see services running
on ports (see usual running services). If services running on ports 7080 or 7022 aren’t running, it means the hub has
not started. If you just started the instance, wait a little more as services may take a while before they’re fully started
and ready.

If after ~1 min, you still don’t see the hub running, log to user biothings and check the starting sequence.

Note: Hub is running in a tmux session, under user biothings

sudo su - biothings
$ tmux a # recall tmux session

python -m biothings.bin.autohub

(pyenv) biothings@a6a6812e2969:~/mygene.info/src$ python -m biothings.bin.autohub
INFO:root:Hub DB backend: {'module': 'biothings.utils.es', 'host': 'localhost:9200'}
INFO:root:Hub database: hubdb

DEBUG:asyncio:Using selector: EpollSelector

start

You should see something looking like this above. If not, you should see the actual error, and depending on the error,
you may be able to fix it (not enough disk space, etc...). The hub can be started again using python -m biothings.
bin.autohub from within the application directory (in our case, /home/biothings/mygene.info/src/)

Note: Press Control-B then D to dettach the tmux session and let the hub running in background.

Logs are available in /data/mygene.info/logs/. You can have a look at:
* dump_*.1log files for logs about data download

* upload_¥.1log files for logs about index update in general (full/incremental)

84 Chapter 6. Quick Start

BioThings SDK

* sync_*.1log files for logs about incremental update only
* and hub_*.1og files for general logs about the hub process

Finally, you can report issues and request for help, by joining Biothings Google Groups (https://groups.google.com/
forum/#!forum/biothings)

6.4 BioThings Hub

Note: This tutorial uses an old/deprecated version of BioThings SDK. It will be updated very soon.

In this tutorial, we will build the whole process, or “hub”, which produces the data for Taxonomy BioThings API,
accessible at t.biothings.io. This API serves information about species, lineage, etc... This “hub” is used to download,
maintain up-to-date, process, merge data. At the end of this process, an Elasticsearch index is created containing all
the data of interest, ready to be served as an API, using Biothings SDK Web component (covered in another tutorial).
Taxonomy Biothings API code is avaiable at https://github.com/biothings/biothings.species.

6.4.1 Prerequesites

BioThings SDK uses MongoDB as the “staging” storage backend for JSON objects before they are sent to Elastic-
search for indexing. You must a have working MongoDB instance you can connect to. We’ll also perform some basic
commands.

You also have to install the latest stable BioThings SDK release, with pip from PyPI:

[pip install biothings

You can install the latest development version of BioThings SDK directly from our github repository like:

[pip install git+https://github.com/biothings/biothings.api.git#egg=biothings

Alternatively, you can download the source code, or clone the BioThings SDK repository and run:

[python setup.py install

You may want to use virtualenv to isolate your installation.

Finally, BioThings SDK is written in python, so you must know some basics.

6.4.2 Configuration file

Before starting to implement our hub, we first need to define a configuration file. This default _config.py
<https://github.com/biothings/biothings.api/blob/master/biothings/hub/default_config.py> file contains all the re-
quired and optional configuration variables, some have to be defined in your own application, other can be overriden
as needed (see config_hub.py <https://github.com/biothings/biothings.species/blob/master/src/config_hub.py> for an
example).

Typically we will have to define the following:

* MongoDB connections parameters, DATA_SRC_* and DATA_TARGET_* parameters. They define connections
to two different databases, one will contain individual collections for each datasource (SRC) and the other will
contain merged collections (TARGET).

6.4. BioThings Hub 85

https://groups.google.com/forum/#!forum/biothings
https://groups.google.com/forum/#!forum/biothings
https://t.biothings.io
https://github.com/biothings/biothings.species
https://pypi.python.org/pypi/biothings
http://github.com/biothings/biothings.api

BioThings SDK

» HUB_DB_BACKEND defines a database connection for hub purpose (application specific data, like sources status,
etc...). Default backend type is MongoDB. We will need to provide a valid mongodb:// URI. Other backend
types are available, like sqlite3 and ElasticSearch, but since we’ll use MongoDB to store and process our data,
we’ll stick to the default.

e DATA_ARCHIVE_ROOT contains the path of the root folder that will contain all the downloaded and processed
data. Other parameters should be self-explanatory and probably don’t need to be changed.

* LOG_FOLDER contains the log files produced by the hub

Create a config.py and add from config_common import * then define all required variables above. config.py will
look something like this:

from config_common import *

DATA_SRC_SERVER = "myhost"
DATA_SRC_PORT = 27017
DATA_SRC_DATABASE = "tutorial_src"
DATA_SRC_SERVER_USERNAME = None
DATA_SRC_SERVER_PASSWORD None

DATA_TARGET_SERVER = "myhost"
DATA_TARGET_PORT = 27017
DATA_TARGET_DATABASE = "tutorial"
DATA_TARGET_SERVER_USERNAME = None
DATA_TARGET_SERVER_PASSWORD = None

HUB_DB_BACKEND = {
"module" : "biothings.utils.mongo",
"uri" : "mongodb://myhost:27017",
3

DATA_ARCHIVE_ROOT = "/tmp/tutorial"
LOG_FOLDER = "/tmp/tutorial/logs"

Note: Log folder must be created manually

6.4.3 hub.py

This script represents the main hub executable. Each hub should define it, this is where the different hub commands
are going to be defined and where tasks are actually running. It’s also from this script that a SSH server will run so we
can actually log into the hub and access those registered commands.

Along this tutorial, we will enrich that script. For now, we’re just going to define a JobManager, the SSH server and
make sure everything is running fine.

import asyncio, asyncssh, sys
import concurrent.futures
from functools import partial

import config, biothings
biothings.config_for_app(config)

from biothings.utils.manager import JobManager

(continues on next page)

86 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

loop = asyncio.get_event_loop()
process_queue = concurrent.futures.ProcessPoolExecutor (max_workers=2)
thread_queue = concurrent.futures.ThreadPoolExecutor()
loop.set_default_executor(process_queue)
jmanager = JobManager (loop,
process_queue, thread_queue,
max_memory_usage=None,

)

jmanager is our JobManager, it’s going to be used everywhere in the hub, each time a parallelized job is created.
Species hub is a small one, there’s no need for many process workers, two should be fine.

Next, let’s define some basic commands for our new hub:

from biothings.utils.hub import schedule, top, pending, done
COMMANDS = {
"sch" : partial(schedule,loop),
"top" : partial(top,process_queue,thread_queue),
"pending" : pending,
"done" : done,

}

These commands are then registered in the SSH server, which is linked to a python interpreter. Commands will be part
of the interpreter’s namespace and be available from a SSH connection.

passwords = {
'guest':

3

(]

, # guest account with no password

from biothings.utils.hub import start_server
server = start_server(loop, "Taxonomy hub",passwords=passwords,port=7022,
—.commands=COMMANDS)

try:
loop.run_until_complete(server)

except (OSError, asyncssh.Error) as exc:
sys.exit('Error starting server: ' + str(exc))

loop.run_forever ()

Let’s try to run that script ! The first run, it will complain about some missing SSH key:

AssertionError: Missing key 'bin/ssh_host_key' (use: 'ssh-keygen -f bin/ssh_host_key' to.
—.generate it

Let’s generate it, following instruction. Now we can run it again and try to connect:

$ ssh guest@localhost -p 7022

The authenticity of host '[localhost]:7022 ([127.0.0.1]:7022)' can't be established.
RSA key fingerprint is SHA256:USgdr9nlFVryr475+kQWlLyPxwzIUREcnOCyctUly1Q.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[localhost]:7022' (RSA) to the list of known hosts.

(continues on next page)

6.4. BioThings Hub 87

BioThings SDK

(continued from previous page)

Welcome to Taxonomy hub, guest!
hub>

Let’s try a command:

hub> top()
® running job(s)
® pending job(s), type 'top(pending)' for more

Nothing fancy here, we don’t have much in our hub yet, but everything is running fine.

6.4.4 Dumpers

BidThings species API gathers data from different datasources. We will need to define different dumpers to make this
data available locally for further processing.

Taxonomy dumper

This dumper will download taxonomy data from NCBI FTP server. There’s one file to download, available at this
location: ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz.

When defining a dumper, we’ll need to choose a base class to derive our dumper class from. There are different
base dumper classes available in BioThings SDK, depending on the protocol we want to use to download data. In
this case, we’ll derive our class from biothings.hub.dataload.dumper.FTPDumper. In addition to defining some
specific class attributes, we will need to implement a method called create_todump_list(). This method fills
self.to_dump list, which is later going to be used to download data. One element in that list is a dictionary with the
following structure:

[{"remote": "<path to file on remote server", "local": "<local path to file>"} }

Remote information are relative to the working directory specified as class attribute. Local information is an absolute
path, containing filename used to save data.

Let’s start coding. We’ll save that python module in dataload/sources/taxonomy/dumper.py.

import biothings, config
biothings.config_for_app(config)

Those lines are used to configure BioThings SDK according to our own configuration information.

from config import DATA_ARCHIVE_ROOT
from biothings.hub.dataload.dumper import FTPDumper

We then import a configuration constant, and the FTPDumper base class.

class TaxonomyDumper (FTPDumper) :

SRC_NAME = "taxonomy"

SRC_ROOT_FOLDER = os.path.join(DATA_ARCHIVE_ROOT, SRC_NAME)
FTP_HOST = 'ftp.ncbi.nih.gov'

CWD_DIR = '/pub/taxonomy'

SUFFIX_ATTR = "timestamp"

SCHEDULE = "@ 9 * * *"

88 Chapter 6. Quick Start

ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/taxonomy/dumper.py

BioThings SDK

* SRC_NAME will used as the registered name for this datasource (more on this later).

e SRC_ROOT_FOLDER is the folder path for this resource, without any version information (dumper will create
different sub-folders for each version).

e FTP_HOST and CWD_DIR gives information to connect to the remove FTP server and move to appropriate remote
directory (FTP_USER and FTP_PASSWD constants can also be used for authentication).

o SUFFIX_ATTR defines the attributes that’s going to be used to create folder for each downloaded version. It’s
basically either “release” or “timestamp”, depending on whether the resource we’re trying to dump has an actual
version. Here, for taxdump file, there’s no version, so we’re going to use “timestamp”. This attribute is auto-
matically set to current date, so folders will look like that: .../taxonomy/20170120, .../taxonomy/20170121,
etc. ..

* Finally SCHEDULE, if defined, will allow that dumper to regularly run within the hub. This is a cron-like notation
(see aiocron documentation for more).

We now need to tell the dumper what to download, that is, create that self.to_dump list:

def create_todump_list(self, force=False):
file_to_dump = "taxdump.tar.gz"
new_localfile = os.path.join(self.new_data_folder,file_to_dump)
try:
current_localfile = os.path.join(self.current_data_folder, file_to_dump)
except TypeError:
current data folder doesn't even exist
current_localfile = new_localfile
if force or not os.path.exists(current_localfile) or self.remote_is_better(file_to_
—.dump, current_localfile):
register new release (will be stored in backend)
self.to_dump.append({"remote": file_to_dump, "local":new_localfile})

That method tries to get the latest downloaded file and then compare that file with the remote file using self.
remote_is_better(file_to_dump, current_localfile), which compares the dates and returns True if the re-
mote is more recent. A dict is then created with required elements and appened to self. to_dump list.

When the dump is running, each element from that self.to_dump list will be submitted to a job and be downloaded in
parallel. Let’s try our new dumper. We need to update hub. py script to add a DumperManager and then register this
dumper:

In hub.py:

import dataload
import biothings.hub.dataload.dumper as dumper

dmanager = dumper.DumperManager (job_manager=jmanager)
dmanager.register_sources(dataload.__sources__)
dmanager.schedule_all()

Let’s also register new commands in the hub:

COMMANDS = {
dump commands
"dm" : dmanager,
"dump" : dmanager.dump_src,

dm will a shortcut for the dumper manager object, and dump will actually call manager’s dump_src () method.

6.4. BioThings Hub 89

https://github.com/biothings/biothings.species/blob/master/src/bin/hub.py

BioThings SDK

Manager is auto-registering dumpers from list defines in dataload package. Let’s define that list:

In dataload/__init__.py:

__sources__ = [
"dataload.sources.taxonomy",

That’s it, it’s just a string pointing to our taxonomy package. We’ll expose our dumper class in that package so the
manager can inspect it and find our dumper (note: we could use give the full path to our dumper module, dataload.
sources.taxonomy . dumper, but we’ll add uploaders later, it’s better to have one single line per resource).

In dataload/sources/taxonomy/__init__.py

[from .dumper import TaxonomyDumper

Let’s run the hub again. We can on the logs that our dumper has been found:

Found a class based on BaseDumper: '<class 'dataload.sources.taxonomy.dumper.
—TaxonomyDumper'>"

Also, manager has found scheduling information and created a task for this:

Scheduling task functools.partial (<bound method DumperManager.create_and_dump of
—.<DumperManager [1 registered]: ['taxonomy']>>, <class 'dataload.sources.taxonomy.
—dumper.TaxonomyDumper'>, job_manager=<biothings.utils.manager.JobManager object at.
—0x7£88fc5346d8>, force=False): 0 9 * * *

We can double-check this by connecting to the hub, and type some commands:

Welcome to Taxonomy hub, guest!
hub> dm
<DumperManager [l registered]: ['taxonomy']>

When printing the manager, we can check our taxonomy resource has been registered properly.

hub> sch()
DumperManager.create_and_dump(<class 'dataload.sources.taxonomy.dumper.TaxonomyDumper'>,
) [0 9 * * *] {run in 00h:39m:09s?}

Dumper is going to run in 39 minutes ! We can trigger a manual upload too:

hub> dump (" taxonomy")
[1] RUN {0.0s} dump("taxonomy")

OK, dumper is running, we can follow task status from the console. At some point, task will be done:

hub>
[1] OK dump("taxonomy"): finished, [None]

It successfully run (OK), nothing was returned by the task ([None]). Logs show some more details:

DEBUG: taxonomy.hub:Creating new TaxonomyDumper instance
INFO:taxonomy_dump:1 file(s) to download

DEBUG: taxonomy_dump :Downloading 'taxdump.tar.gz'

INFO: taxonomy_dump: taxonomy successfully downloaded
INFO: taxonomy_dump:success

90 Chapter 6. Quick Start

https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/__init__.py
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/taxonomy/__init__.py

BioThings SDK

Alright, now if we try to run the dumper again, nothing should be downloaded since we got the latest file available.
Let’s try that, here are the logs:

DEBUG: taxonomy.hub:Creating new TaxonomyDumper instance
DEBUG: taxonomy_dump: 'taxdump.tar.gz' is up-to-date, no need to download
INFO: taxonomy_dump:Nothing to dump

So far so good! The actual file, depending on the configuration settings, it’s located in
Jdata/taxonomy/20170125/taxdump.tar.gz. We can notice the timestamp used to create the folder. Let’s also
have a look at in the internal database to see the resource status. Connect to MongoDB:

> use hub_config
switched to db hub_config
> db.src_dump.find()
{
"_id" : "taxonomy",
"release" : "20170125",
"data_folder" : "./data/taxonomy/20170125",
"pending_to_upload" : true,
"download" : {
"logfile" : "./data/taxonomy/taxonomy_20170125_dump.log",
"time" : "4.52s",
"status" : "success",
"started_at" : ISODate("2017-01-25T08:32:28.448Z")
}
3
>

We have some information about the download process, how long it took to download files, etc... We have the path
to the data_folder containing the latest version, the release number (here, it’s a timestamp), and a flag named
pending_to_upload. That will be used later to automatically trigger an upload after a dumper has run.

So the actual file is currently compressed, we need to uncompress it before going further. We can add a post-dump step
to our dumper. There are two options there, by overriding one of those methods:

def post_download(self, remotefile, localfile): triggered for each downloaded file
def post_dump(self): triggered once all files have been downloaded

We could use either, but there’s a utility function available in BioThings SDK that uncompress everything in a directory,
let’s use it in a global post-dump step:

from biothings.utils.common import untargzall

def post_dump(self):
untargzall (self.new_data_folder)

self.new_data_folder is the path to the folder freshly created by the dumper (in our case,
Jdata/taxonomy/20170125)

Let’s try this in the console (restart the hub to make those changes alive). Because file is up-to-date, dumper will not
run. We need to force it:

[hub> dump (" taxonomy" , force=True)

Or, instead of downloading the file again, we can directly trigger the post-dump step:

6.4. BioThings Hub 91

BioThings SDK

[hub> dump (" taxonomy",steps="post") J

There are 2 steps steps available in a dumper:

1. dump : will actually download files

2. post : will post-process downloaded files (post_dump)
By default, both run sequentially.

After typing either of these commands, logs will show some information about the uncompressing step:

DEBUG: taxonomy.hub:Creating new TaxonomyDumper instance

INFO: taxonomy_dump:success

INFO:root:untargz '/opt/slelong/Documents/Projects/biothings.species/src/data/taxonomy/
—20170125/taxdump.tar.gz’'

Folder contains all uncompressed files, ready to be process by an uploader.

UniProt species dumper

Following guideline from previous taxonomy dumper, we’re now implementing a new dumper used to download
species list. There’s just one file to be downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/docs/speclist.txt. Same as before, dumper will inherits FTPDumper base class. File is not
compressed, so except this, this dumper will look the same.

Code is available on github for further details: ee674c55bad849b43c¢8514fcc6b7139423c¢70074 for the whole commit
changes, and dataload/sources/uniprot/dumper.py for the actual dumper.

Gene information dumper
The last dumper we have to implement will download some gene information from NCBI (ftp://ftp.ncbi.nlm.nih.gov/
gene/DATA/gene_info.gz). It’s very similar to the first one (we could even have merged them together).

Code is available on github: d3b3486f71e865235efd673d2f371b53eaalbc5b for whole changes and dat-
aload/sources/geneinfo/dumper.py for the dumper.

Additional base dumper classes

The previous examples utilized the FTPDumper base dumper class. The list of available base dumper classes include:
e FTPDumper - Downloads content from ftp source

e LastModifiedFTPDumper - A wrapper over FTPDumper, one URL will give one FTPDumper instance.
SRC_URLS containing a list of URLs pointing to files to download, use FTP’s MDTM command to check
whether files should be downloaded. The release is generated from the last file’s MDTM in SRC_URLS, and
formatted according to RELEASE_FORMAT.

e HTTPDumper- Dumper using HTTP protocol and “requests” library
* LastModifiedHTTPDumper - Similar to LastModifiedFTPDumper, but for http

* WgetDumper- Fill self.to_dump list with dict(“remote”:remote_path,”’local”:local_path) elements. This is the
todo list for the dumper

* FilesystemDumper- works locally and copy (or move) files to datasource folder

e DummyDumper - Does nothing

92 Chapter 6. Quick Start

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/docs/speclist.txt
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/docs/speclist.txt
https://github.com/biothings/biothings.species/commit/ee674c55bad849b43c8514fcc6b7139423c70074
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/uniprot/dumper.py
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
https://github.com/biothings/biothings.species/commit/d3b3486f71e865235efd673d2f371b53eaa0bc5b
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/geneinfo/dumper.py
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/geneinfo/dumper.py

BioThings SDK

e ManualDumper - Assists user to dump a resource. This will usually expect the files to be downloaded first
(sometimes there’s no easy way to automate this process). Once downloaded, a call to dump() will make sure
everything is fine in terms of files and metadata

¢ GoogleDriveDumper - Dumps files from google drive

* GitDumper - Gets data from a git repo. Repo is stored in SRC_ROOT_FOLDER (without versioning) and then
versions/releases are fetched in SRC_ROOT_FOLDER/<release>

Additional details on the available base dumper classes can be found at: https://github.com/biothings/biothings.api/
blob/master/biothings/hub/dataload/dumper.py

6.4.5 Uploaders

Now that we have local data available, we can process them. We’re going to create 3 different uploaders, one for each
datasource. Each uploader will load data into MongoDB, into individual/single collections. Those will then be used
in the last merging step.

Before going further, we’ll first create an UploaderManager instance and register some of its commands in the hub:

import biothings.hub.dataload.uploader as uploader

will check every 10 seconds for sources to upload

umanager = uploader.UploaderManager(poll_schedule = '* * = * * */10"', job_
<.manager=jmanager)

umanager .register_sources(dataload.__sources__)

umanager.poll ()

COMMANDS = {

upload commands

um" : umanager,
"upload" : umanager.upload_src,

Running the hub, we’ll see the kind of log statements:

INFO:taxonomy.hub:Found 2 resources to upload (['species', 'geneinfo'])
INFO:taxonomy.hub:Launch upload for 'species'

ERROR: taxonomy .hub:Resource 'species' needs upload but is not registered in manager
INFO:taxonomy.hub:Launch upload for 'geneinfo'

ERROR: taxonomy.hub:Resource 'geneinfo' needs upload but is not registered in manager

Indeed, datasources have been dumped, and a pending_to_upload flag has been to True in src_dump. Upload-
Manager polls this src_dump internal collection, looking for this flag. If set, it runs automatically the corresponding
uploader(s). Since we didn’t implement any uploaders yet, manager complains... Let’s fix that.

6.4. BioThings Hub 93

https://github.com/biothings/biothings.api/blob/master/biothings/hub/dataload/dumper.py
https://github.com/biothings/biothings.api/blob/master/biothings/hub/dataload/dumper.py

BioThings SDK

Taxonomy uploader

The taxonomy files we downloaded need to be parsed and stored into a MongoDB collection. We won’t go in too much
details regarding the actual parsing, there are two parsers, one for nodes.dmp and another for names.dmp files. They
yield dictionaries as the result of this parsing step. We just need to “connect” those parsers to uploaders.

Following the same approach as for dumpers, we’re going to implement our first uploaders by inheriting one the
base classes available in BioThings SDK. We have two files to parse, data will stored in two different MongoDB
collections, so we’re going to have two uploaders. Each inherits from biothings.hub.dataload.uploader.
BaseSourceUploader, 1load_data method has to be implemented, this is where we “connect” parsers.

Beside this method, another important point relates to the storage engine. load_data will, through the parser, yield
documents (dictionaries). This data is processed internally by the base uploader class (BaseSourceUploader) using
a storage engine. BaseSourceUploader uses biothings.hub.dataload.storage.BasicStorage as its engine.
This storage inserts data in MongoDB collection using bulk operations for better performances. There are other storages
available, depending on how data should be inserted (eg. IgnoreDuplicatedStorage will ignore any duplicated data
error). While choosing a base uploader class, we need to consider which storage class it’s actually using behind-the-
scene (an alternative way to do this is using BaseSourceUploader and set the class attribute storage_class, such as in
this uploader: biothings/dataload/uploader.py#L.447).

The first uploader will take care of nodes.dmp parsing and storage.

import biothings.hub.dataload.uploader as uploader
from .parser import parse_refseq_names, parse_refseqg_nodes

class TaxonomyNodesUploader (uploader.BaseSourceUploader):

main_source = "taxonomy"
name = '"nodes"

def load_data(self,data_folder):
nodes_file = os.path.join(data_folder, "nodes.dmp")
self.logger.info("Load data from file '%s'" % nodes_file)
return parse_refseq_nodes(open(nodes_£file))

e TaxonomyNodesUploader derives from BaseSourceUploader

* name gives the name of the collection used to store the data. If main_source is not defined, it must match
SRC_NAME in dumper’s attributes

* main_source is optional and allows to define main sources and sub-sources. Since we have 2 parsers here, we’re
going to have 2 collections created. For this one, we want the collection named “nodes”. But this parser relates
to taxonomy datasource, so we define amain source called taxonomy, which matches SRC_NAME in dumper’s
attributes.

* load_data() has data_folder as parameter. It will be set accordingly, to the path of the last version dumped.
Also, that method gets data from parsing function parse_refseq_nodes. It’s where we “connect” the parser.
We just need to return parser’s result so the storage can actually store the data.

The other parser, for names.dmp, is almost the same:

class TaxonomyNamesUploader (uploader.BaseSourceUploader) :

main_source = "taxonomy"
name = "names"

def load_data(self,data_folder):

(continues on next page)

94 Chapter 6. Quick Start

https://github.com/biothings/biothings.api/blob/master/biothings/dataload/uploader.py#L447

BioThings SDK

(continued from previous page)
names_file = os.path.join(data_folder, "names.dmp")
self.logger.info("Load data from file '%s'" % names_file)
return parse_refseq_names(open(names_£file))

We then need to “expose” those parsers in taxonomy package, in dataload/sources/taxonomy/__init__.py:

[from .uploader import TaxonomyNodesUploader, TaxonomyNamesUploader

Now let’s try to run the hub again. We should see uploader manager has automatically triggered some uploads:

INFO:taxonomy.hub:Launch upload for 'taxonomy'

INFO:taxonomy .names_upload:Uploading 'names' (collection: names)
INFO:taxonomy.nodes_upload:Uploading 'nodes' (collection: nodes)

INFO: taxonomy.nodes_upload:Load data from file './data/taxonomy/20170125/nodes.dmp’
INFO: taxonomy .names_upload:Load data from file './data/taxonomy/20170125/names.dmp’
INFO:root:Uploading to the DB...

INFO:root:Uploading to the DB...

While running, we can check what jobs are running, using top() command:

hub> top()

PID | SOURCE | CATEGORY | STEP | i
—.DESCRIPTION [MEM | CPU | STARTED_AT | DURATION
5795 | taxonomy.nodes | uploader | update_data | o
. | 49.7MiB | 0.0% | 2017/01/25 14:58:40|15.49s
5796 | taxonomy.names | uploader | update_data | o
. | 54.6MiB | 0.0% | 2017/01/25 14:58:40|15.49s

2 running job(s)
® pending job(s), type 'top(pending)' for more
16 finished job(s), type 'top(done)' for more

We can see two uploaders running at the same time, one for each file. top(done) can also display jobs that are done
and finally top(pending) can give an overview of jobs that are going to be launched when a worker is available (it
happens when there are more jobs created than the available number of workers overtime).

In src_dump collection, we can see some more information about the resource and its upload processes. Two jobs
were created, we have information about the duration, log files, etc...

> db.src_dump.find({_id:"taxonomy"})
{
"_id" : "taxonomy",
"download" : {
"started_at" : ISODate("2017-01-25T13:09:26.423Z"),

"status" : "success",
"time" : "3.31s",
"logfile" : "./data/taxonomy/taxonomy_20170125_dump.log"
B
"data_folder" : "./data/taxonomy/20170125",
"release" : "20170125",
"upload" : {
"status" : "success",

(continues on next page)

6.4. BioThings Hub 95

https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/taxonomy/__init__.py

BioThings SDK

(continued from previous page)

"jobs" : {

"names" : {
"started_at" : ISODate("2017-01-25T14:58:40.034Z"),
"pid" : 5784,
"logfile" : "./data/taxonomy/taxonomy.names_20170125_

—upload.log",

"step" : "names",
"temp_collection" : "names_temp_elUdhlte",
"status" : "success",
"time" : "26.61s",
"count" : 1552809,
"time_in_s" : 27

1

"nodes" : {
"started_at" : ISODate("2017-01-25T14:58:40.043Z"),
"pid" : 5784,
"logfile" : "./data/taxonomy/taxonomy.nodes_20170125_

—upload.log",

"step" : "nodes",
"temp_collection" : "nodes_temp_T5VnzRQC",
"status" : "success",
"time" : "22.4s",
"time_in_s" : 22,
"count" : 1552809

}

}

In the end, two collections were created, containing parsed data:

> db.names.count()
1552809
> db.nodes.count ()
1552809

> db.names.find().1limit(2)

{
"_id" . "1v,
"taxid" : 1,
"other_names" : [
"all"
i
"scientific_name" : "root"
}
{
"_id" o "2",
"other_names" : [
"bacteria",
"not bacteria haeckel 1894"
Js
"genbank_common_name" : "eubacteria",

(continues on next page)

96 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

"in-part" : [
"monera",
"procaryotae",
"prokaryota",
"prokaryotae",
"prokaryote",
"prokaryotes"
ie
"taxid" : 2,
"scientific_name" : "bacteria"
}
> db.nodes.find() .1limit(2)
{ "_id" : "1", "rank" : "no rank", "parent_taxid" : 1, "taxid" : 1 }
{
"_id" o 2",
"rank" : "superkingdom",
"parent_taxid" : 131567,
"taxid" : 2
}

UniProt species uploader

Following the same guideline, we’re going to create another uploader for species file.

import biothings.hub.dataload.uploader as uploader
from .parser import parse_uniprot_speclist

class UniprotSpeciesUploader (uploader.BaseSourceUploader):
name = "uniprot_species"
def load_data(self,data_folder):
nodes_file = os.path.join(data_folder, "speclist.txt")

self.logger.info("Load data from file '%s'" % nodes_file)
return parse_uniprot_speclist(open(nodes_file))

In that case, we need only one uploader, so we just define “name” (no need to define main_source here).

We need to expose that uploader from the package, in dataload/sources/uniprot/__init__.py:

[from .uploader import UniprotSpeciesUploader]

Let’s run this through the hub. We can use the “upload” command there (though manager should trigger the upload
itself):

hub> upload("uniprot_species")
[1] RUN {0.0s} upload("uniprot_species")

Similar to dumpers, there are different steps we can individually call for an uploader:

» data: will take care of storing data

6.4. BioThings Hub 97

https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/uniprot/__init__.py

BioThings SDK

* post: calls post_update() method, once data has been inserted. Useful to post-process data or create an index for
instance

* master: will register the source in src_master collection, which is used during the merge step. Uploader method
get_mapping() can optionally returns an ElasticSearch mapping, it will be stored in src_master during that
step. We’ll see more about this later.

* clean: will clean temporary collections and other leftovers. ..

Within the hub, we can specify these steps manually (they’re all executed by default).

[hub> upload("uniprot_species",steps="clean")

Or using a list:

[hub> upload("uniprot_species",steps=["data","clean"])

Gene information uploader

Let’s move forward and implement the last uploader. The goal for this uploader is to identify whether, for a taxonomy
ID, there are existing/known genes. File contains information about genes, first column is the taxid. We want to
know all taxonomy IDs present in the file, and the merged document, we want to add key such as {'has_gene’
True/False}.

Obviously, we’re going to have a lot of duplicates, because for one taxid we can have many genes present in the files. We
have options here 1) remove duplicates before inserting data in database, or 2) let the database handle the duplicates
(rejecting them). Though we could process data in memory — processed data is rather small in the end —, for demo
purpose, we’ll go for the second option.

import biothings.hub.dataload.uploader as uploader
import biothings.hub.dataload.storage as storage
from .parser import parse_geneinfo_taxid

class GeneInfoUploader(uploader.BaseSourceUploader) :
storage_class = storage.IgnoreDuplicatedStorage
name = "geneinfo"
def load_data(self,data_folder):
gene_file = os.path.join(data_folder, "gene_info")

self.logger.info("Load data from file '%s'" % gene_file)
return parse_geneinfo_taxid(open(gene_file))

* storage_class: this is the most important setting in this case, we want to use a storage that will ignore any
duplicated records.

* parse_geneinfo_taxid : is the parsing function, yield documents as {"_id" : "taxid"}
The rest is closed to what we already encountered. Code is available on github in dataload/sources/geneinfo/uploader.py

When running the uploader, logs show statements like these:

INFO:taxonomy.hub:Found 1 resources to upload (['geneinfo'])
INFO:taxonomy.hub:Launch upload for 'geneinfo'
INFO:taxonomy.hub:Building task: functools.partial (<bound method UploaderManager.create_

(continues on next page)

98 Chapter 6. Quick Start

https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/geneinfo/uploader.py

BioThings SDK

(continued from previous page)

—.and_load of <UploaderManager [3 registered]: ['geneinfo', 'species', 'taxonomy']>>,
—<class 'dataload.sources.gen

einfo.uploader.GeneInfoUploader'>, job_manager=<biothings.utils.manager.JobManager..
—object at 0x7fbf5£8c69b0>)

INFO:geneinfo_upload:Uploading 'geneinfo' (collection: geneinfo)
INFO:geneinfo_upload:Load data from file './data/geneinfo/20170125/gene_info'
INFO:root:Uploading to the DB...

INFO:root:Inserted 62 records, ignoring 9938 [0.3s]

INFO:root:Inserted 15 records, ignoring 9985 [0.28s]

INFO:root:Inserted 0 records, ignoring 10000 [0.23s]

INFO:root:Inserted 31 records, ignoring 9969 [0.25s]

INFO:root:Inserted 16 records, ignoring 9984 [0.26s]

INFO:root:Inserted 4 records, ignoring 9996 [0.21s]

INFO:root:Inserted 4 records, ignoring 9996 [0.25s]

INFO:root:Inserted 1 records, ignoring 9999 [0.25s]

INFO:root:Inserted 26 records, ignoring 9974 [0.23s]

INFO:root:Inserted 61 records, ignoring 9939 [0.26s]

INFO:root:Inserted 77 records, ignoring 9923 [0.24s]

While processing data in batch, some are inserted, others (duplicates) are ignored and discarded. The file is quite big,
so the process can be long. ..

Note: should we want to implement the first option, the parsing function would build a dictionary indexed by taxid and
would read the whole, extracting taxid. The whole dict would then be returned, and then processed by storage engine.

So far, we’ve defined dumpers and uploaders, made them working together through some managers defined in the hub.
We’re now ready to move the last step: merging data.

6.4.6 Mergers

Merging will the last step in our hub definition. So far we have data about species, taxonomy and whether a taxonomy
ID has known genes in NCBI. In the end, we want to have a collection where documents look like this:

{
_id: "9606",
authority: ["homo sapiens linnaeus, 1758"],
common_name: "man',
genbank_common_name: "human",
has_gene: true,
lineage: [9606,9605,207598,9604,314295,9526,...1],
other_names: ["humans"],
parent_taxid: 9605,
rank: "species'",
scientific_name: "homo sapiens",
taxid: 9606,
uniprot_name: "homo sapiens'

e _id: the taxid, the ID used in all of our invidual collection, so the key will be used to collect documents and
merge them together (it’s actually a requirement, documents are merged using _id as the common key).

* authority, common_name, genbank_common_name, other_names, scientific_name and taxid come from taxon-
omy.names collection.

6.4. BioThings Hub 99

BioThings SDK

* uniprot_name comes from species collection.

* has_gene is a flag set to true, because taxid 9606 has been found in collection geneinfo.

* parent_taxid and rank come from taxonomy.nodes collection.

* (there can be other fields available, but basically the idea here is to merge all our individual collections...)

* finally, lineage... it’s a little tricky as we need to query nodes in order to compute that field from _id and
parent_taxid.

A first step would be to merge names, nodes and species collections together. Other keys need some post-merge
processing, they will handled in a second part.

Let’s first define a BuilderManager in the hub.

import biothings.hub.databuild.builder as builder

bmanager = builder.BuilderManager(poll_schedule='* * * * * */10', job_manager=jmanager)
bmanager.configure()

bmanager.poll()

COMMANDS = {
building/merging

"bm" : bmanager,
"merge" : bmanager.merge,

Merging configuration

BuilderManager uses a builder class for merging. While there are many different dumpers and uploaders classes, there’s
only one merge class (for now). The merging process is defined in a configuration collection named src_build. Usually,
we have as many configurations as merged collections, in our case, we’ll just define one configuration.

When running the hub with a builder manager registered, manager will automatically create this src_build collection
and create configuration placeholder.

> db.src_build. find()

{
"_id" : "placeholder",
"name" : "placeholder",
"sources" : [1,
"root" : []

}

We’re going to use that template to create our own configuration:

e _id and name are the name of the configuration (they can be different but really, _id is the one used here). ..

We'll set these as: {"_id":"mytaxonomy", "name":"mytaxonomy" }.

* sources is a list of collection names used for the merge. A element is this can also be a regular expression
matching collection names. If we have data spread across different collection, like one collection per chromosome
data, we could use a regex such as data_chr.*. We’ll set this as: {"sources":["names" ,"species",
"nodes", "geneinfo"]}

¢ root defines root datasources, that is, datasources that can be used to initiate document creation. Sometimes, we
want data to be merged only if an existing document previously exists in the merged collection. If root sources are
defined, they will be merged first, then the other remaining in sources will be merged with existing documents.

100 Chapter 6. Quick Start

BioThings SDK

If root doesn’t exist (or list is empty), all sources can initiate documents creation. root can be a list of collection
names, or a negation (not a mix of both). So, for instance, if we want all datasources to be root, except sourcel0,
we can specify: "root" : ["!sourcel®"]. Finally, all root sources must all be declared in sources (root is
a subset of sources). That said, it’s interesting in our case because we have taxonomy information coming from
NCBI and UniProt, but we want to make sure a document built from UniProt only doesn’t exist (it’s because
we need parent_taxid field which only exists in NCBI data, so we give priority to those sources first). So root
sources are going to be names and nodes, but because we’re lazy typist, we’re going to set this to: {"root"
["!species"]}

The resulting document should look like this. Let’s save this in src_build (and also remove the placeholder, not useful

anymore):
> conf
{
"_id" : "mytaxonomy",
"name" : "mytaxonomy",
"sources" : [
"names",
"uniprot_species",
"nodes",
"geneinfo"
ie
"root" : ["!uniprot_species"]
}
> db.src_build.save(conf)

> db.

src_build.remove({_id: "placeholder"})

Note:

geneinfo contains only IDs, we could ignore it while merging but we’ll need it to be declared as a source when

we’ll create the index later.

Restarting the hub, we can then check that configuration has properly been registered in the manager, ready to be used.
We can list the sources specified in configuration.

hub>

bm

<BuilderManager [1 registered]: ['mytaxonomy']>

hub>

bm.list_sources("mytaxonomy")

['names', 'species', 'nodes']

OK, let’s try to merge !

hub>

merge ("mytaxonomy")

[1] RUN {0.0s} merge("mytaxonomy")

Looking at the logs, we can see builder will first root sources:

INFO:
INFO:
INFO:

INFO:
INFO:

mytaxonomy_build:Merging into target collection 'mytaxonomy_20170127_pnlygtap'
mytaxonomy_build:Sources to be merged: ['names', 'nodes', 'species', 'geneinfo']
mytaxonomy_build:Root sources: ['names', 'nodes', 'geneinfo']
mytaxonomy_build:Other sources: ['species']

mytaxonomy_build:Merging root document sources: ['names', 'nodes', 'geneinfo']

Then once root sources are processed, species collection merged on top on existing documents:

6.4. BioThings Hub 101

BioThings SDK

INFO:mytaxonomy_build:Merging other resources: ['species']

DEBUG:mytaxonomy_build:Documents from source 'species' will be stored only if a previous.
—.document exists with same _id

After a while, task is done, merge has returned information about the amount of data that have been merge: 1552809
records from collections names, nodes and geneinfo, 25394 from species. Note: the figures show the number fetched

from collections, not necessarily the data merged. For instance, merged data from species may be less since it’s not a
root datasource).

hub>

[1] OK merge("mytaxonomy"): finished, [{'total_species': 25394, 'total_nodes': 1552809,
—'total_names': 1552809}]

Builder creates multiple merger jobs per collection. The merged collection name is, by default, generating from the
build name (mytaxonomy), and contains also a timestamp and some random chars. We can specify the merged collec-
tion name from the hub. By default, all sources defined in the configuration are merged., and we can also select one or
more specific sources to merge:

[hub> merge ("mytaxonomy", sources="uniprot_species",target_name="test_merge")]

Note: sources parameter can also be a list of string.

If we go back to src_build, we can have information about the different merges (or builds) we ran:

> db.src_build.find({_id: "mytaxonomy"},{build:1})

{
"_id" : "mytaxonomy",
"build" : [
{
"src_versions" : {
"geneinfo" : "20170125",
"taxonomy" : "20170125",
"uniprot_species" : "20170125"
B
"time_in_s" : 386,
"logfile" : "./data/logs/mytaxonomy_20170127_build.log",
"pid" : 57702,
"target_backend" : "mongo",
"time" : "6m26.29s",
"step_started_at" : ISODate("2017-01-27T11:36:47.401Z"),
"stats" : {
"total_uniprot_species" : 25394,

"total_nodes" : 1552809,
"total_names" : 1552809

}!
"started_at" : ISODate("2017-01-27T11:30:21.114Z7"),
"status" : "success",
"target_name" : "mytaxonomy_20170127_pnlygtqgp",
"step" : "post-merge",
"sources" : [
"uniprot_species"
1

102 Chapter 6. Quick Start

BioThings SDK

We can see the merged collection (auto-generated) is mytaxonomy_20170127_pnlygtqp. Let’s have a look at the
content (remember, collection is in target database, not in src):

> use tutorial
switched to db tutorial
> db.mytaxonomy_20170127_pnlygtgp.count()

1552809
> db.mytaxonomy_20170127_pnlygtgp.find({_id:96063})
{
"_id" : 9606,
"rank" : "species",
"parent_taxid" : 9605,
"taxid" : 9606,
"common_name" : "man",
"other_names" : [
"humans"
Js
"scientific_name" : "homo sapiens",
"authority" : [
"homo sapiens linnaeus, 1758"
ie
"genbank_common_name" : "human",
"uniprot_name" : "homo sapiens"
}

Both collections have properly been merged. We now have to deal with the other data.

Mappers

The next bit of data we need to merge is geneinfo. As a reminder, this collection only contains taxonomy ID (as _id
key) which have known NCBI genes. We’ll create a mapper, containing this information. A mapper basically acts as
an object that can pre-process documents while they are merged.

Let’s define that mapper in databuild/mapper.py

import biothings, config

biothings.config_for_app(config)

from biothings.utils.common import loadobj

import biothings.utils.mongo as mongo

import biothings.hub.databuild.mapper as mapper

just to get the collection name

from dataload.sources.geneinfo.uploader import GeneInfoUploader

class HasGeneMapper (mapper .BaseMapper) :

def __init__(self, *args, **kwargs):
super (HasGeneMapper,self).__init__(*args, **kwargs)
self.cache = None

def load(self):
if self.cache is None:
this is a whole dict containing all taxonomy _ids

(continues on next page)

6.4. BioThings Hub 103

https://github.com/biothings/biothings.species/blob/master/src/hub/databuild/mapper.py

BioThings SDK

(continued from previous page)

col = mongo.get_src_db() [GeneInfoUploader.name]
self.cache = [d["_id"] for d in col.find({},{"_id":1})]

def process(self,docs):
for doc in docs:
if doc["_id"] in self.cache:
doc["has_gene"] = True
else:
doc["has_gene"] = False
yield doc

We derive our mapper from biothings.hub.databuild.mapper.BaselMapper, which expects load and process
methods to be defined. load is automatically called when the mapper is used by the builder, and process contains the
main logic, iterating over documents, optionally enrich them (it can also be used to filter documents, by not yielding
them). The implementation is pretty straightforward. We get and cache the data from geneinfo collection (the whole
collection is very small, less than 20’000 IDs, so it can fit nicely and efficiently in memory). If a document has its _id
found in the cache, we enrich it.

Once defined, we register that mapper into the builder. In bin/hub.py, we modify the way we define the builder manager:

import biothings.hub.databuild.builder as builder
from databuild.mapper import HasGeneMapper
hasgene = HasGeneMapper (name="has_gene")
pbuilder = partial(builder.DataBuilder,mappers=[hasgene])
bmanager = builder.BuilderManager(
poll_schedule="* * * * * */1Q",
job_manager=jmanager,
builder_class=pbuilder)
bmanager.configure()
bmanager.poll()

First we instantiate a mapper object and give it a name (more on this later). While creating the manager, we need to
pass a builder class. The problem here is we also have to give our mapper to that class while it’s instantiated. We’re
using partial (from functools), which allows to partially define the class instantiation. In the end, builder_class
parameter is expected to a callable, which is the case with partial.

Let’s try if our mapper works (restart the hub). Inside the hub, we’re going to manually get a builder instance. Remember
through the SSH connection, we can access python interpreter’s namespace, which is very handy when it comes to
develop and debug as we can directly access and “play” with objects and their states:

First we get a builder instance from the manager:

hub> builder = bm["mytaxonomy"]
hub> builder
<biothings.hub.databuild.builder.DataBuilder object at 0x7f278aecf400>

Let’s check the mappers and get ours:

hub> builder.mappers
{None: <biothings.hub.databuild.mapper.TransparentMapper object at 0x7f278aecf4e®>, 'has_
—gene': <databuild.mapper.HasGeneMapper object at 0x7f27ac6c0a90>}

We have our has_gene mapper (it’s the name we gave). We also have a TransparentMapper. This mapper is
automatically added and is used as the default mapper for any document (there has to be one...).

104 Chapter 6. Quick Start

https://github.com/biothings/biothings.species/blob/master/src/bin/hub.py

BioThings SDK

hub> hasgene = builder.mappers["has_gene"]
hub> len(hasgene.cache)
Error: TypeError("object of type 'NoneType' has no len()",)

Oops, cache isn’t loaded yet, we have to do it manually here (but it’s done automatically during normal execution).

hub> hasgene.load()
hub> len(hasgene.cache)
19201

OK, it’s ready. Let’s now talk more about the mapper’s name. A mapper can applied to different sources, and we
have to define which sources’ data should go through that mapper. In our case, we want names and species collec-
tion’s data to go through. In order to do that, we have to instruct the uploader with a special attribute. Let’s modify
dataload.sources.species.uploader.UniprotSpeciesUploader class

class UniprotSpeciesUploader(uploader.BaseSourceUploader):

name = "uniprot_species"

__metadata__ = {"mapper" : 'has_gene'}
__metadata__ dictionary is going to be used to create a master document. That document
is stored in src_master collection (we talked about it earlier). Let’s add this metadata to dat-

aload.sources.taxonomy.uploader. TaxonomyNamesUploader

class TaxonomyNamesUploader (uploader.BaseSourceUploader):

main_source = "taxonomy"
name = "names"
__metadata__ = {"mapper" : 'has_gene'}

Before using the builder, we need to refresh master documents so these metadata are stored in src_master. We could
trigger a new upload, or directly tell the hub to only process master steps:

hub> upload("uniprot_species",steps="master")

[1] RUN {0.0s} upload("uniprot_species",steps="master™)

hub> upload("taxonomy.names",steps="master")

[1] OK wupload("uniprot_species",steps="master"): finished, [None]
[2] RUN {0.0s} upload("taxonomy.names",steps="master")

(you’ll notice for taxonomy, we only trigger upload for sub-source names, using “dot-notation”, corresponding to
“main_source.name”’. Let’s now have a look at those master documents:

> db.src_master.find({_id:{$in: ["uniprot_species","names"]}})

{
"_id" : "names",
"name" : "names",
"timestamp" : ISODate("2017-01-26T16:21:32.546Z"),
"mapper" : "has_gene",
"mapping" : {
}
}
{
"_id" : "uniprot_species",

(continues on next page)

6.4. BioThings Hub 105

https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/uniprot/uploader.py
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/taxonomy/uploader.py
https://github.com/biothings/biothings.species/blob/master/src/hub/dataload/sources/taxonomy/uploader.py

BioThings SDK

(continued from previous page)

"name" : "uniprot_species",

"timestamp" : ISODate("2017-01-26T16:21:19.414Z"),
"mapper" : "has_gene",

"mapping" : {

}

We have our mapper key stored. We can now trigger a new merge (we specify the target collection name):

hub> merge("mytaxonomy",target_name="mytaxonomy_test")
[3] RUN {0.0s} merge("mytaxonomy",target_name="mytaxonomy_test")

In the logs, we can see our mapper has been detected and is used:

INFO:mytaxonomy_build:Creating merger job #1/16, to process mames' 100000/1552809 (6.4%)
INFO:mytaxonomy_build:Found mapper '<databuild.mapper.HasGenellapper object at.
—0x7f47ef3bbac8>"' for source 'names'’

INFO:mytaxonomy_build:Creating merger job #1/1, to process 'species' 25394/25394 (100.0%)
INFO:mytaxonomy_build:Found mapper '<databuild.mapper.HasGenellapper object at.
—0x7f47ef3bbac8>"' for source 'species'

Once done, we can query the merged collection to check the data:

> use tutorial
switched to db tutorial
> db.mytaxonomy_test.find({_id:9606})
{
"_id" : "9606",
"has_gene" : true,
"taxid" : 9606,
"uniprot_name" : "homo sapiens",
"other_names" : [
"humans"
Jg
"scientific_name" : "homo sapiens",
"authority" : [
"homo sapiens linnaeus, 1758"
s
"genbank_common_name" : "human",

"common_name" : "man

OK, there’s a has_gene flag that’s been set. So far so good !

106 Chapter 6. Quick Start

BioThings SDK

Post-merge process

We need to add lineage and parent taxid information for each of these documents. We’ll implement that last part as
a post-merge step, iterating over each of them. In order to do so, we need to define our own builder class to override
proper methodes there. Let’s define it in databuild/builder.py..

import biothings.hub.databuild.builder as builder
import config

class TaxonomyDataBuilder(builder.DataBuilder):

def post_merge(self, source_names, batch_size, job_manager):
pass

The method we have to implement in post_merge, as seen above. We also need to change hub.py to use that builder
class:

from databuild.builder import TaxonomyDataBuilder
pbuilder = partial (TaxonomyDataBuilder,mappers=[hasgene])

For now, we just added a class level in the hierarchy, everything runs the same as before. Let’s have a closer look to that
post-merge process. For each document, we want to build the lineage. Information is stored in nodes collection. For
instance, taxid 9606 (homo sapiens) has a parent_taxid 9605 (homo), which has a parent_taxid 207598 (homininae),
etc... In the end, the homo sapiens lineage is:

9606, 9605, 207598, 9604, 314295, 9526, 314293, 376913, 9443, 314146, 1437010, 9347,.
—32525, 40674, 32524, 32523, 1338369,

8287, 117571, 117570, 7776, 7742, 89593, 7711, 33511, 33213, 6072, 33208, 33154, 2759,.
131567 and 1

We could recursively query nodes collections until we reach the top the tree, but that would be a lot of queries. We just
need taxid and parent_taxid information to build the lineage, maybe it’s possible to build a dictionary that could
fit in memory. nodes has 1552809 records. A dictionary would use 2 * 1552809 * sizeof(integer) + index overhead.
That’s probably few megabytes, let’s assume that ok... (note: using pympler lib, we can actually know that dictionary
size will be closed to 200MB...)

We’re going to use another mapper here, but no sources will use it. We’ll just instantiate it from post_merge method. In
databuild/mapper.py, let’s add another class:

from dataload.sources.taxonomy.uploader import TaxonomyNodesUploader

class LineageMapper (mapper.BaseMapper) :

def __init__(self, *args, **kwargs):
super (LineageMapper,self).__init__(*args, **kwargs)
self.cache = None

def load(self):
if self.cache is None:
col = mongo.get_src_db() [TaxonomyNodesUploader.name]
self.cache = {}
[self.cache.setdefault(d["_id"],d["parent_taxid"]) for d in col.find({}, {
< "parent_taxid":1})]

def get_lineage(self,doc):

(continues on next page)

6.4. BioThings Hub 107

https://github.com/biothings/biothings.species/blob/master/src/hub/databuild/builder.py
https://pythonhosted.org/Pympler/
https://github.com/biothings/biothings.species/blob/master/src/hub/databuild/mapper.py

BioThings SDK

(continued from previous page)

if doc['taxid'] == doc['parent_taxid']: #take care of node #1

we reached the top of the taxonomy tree

doc['lineage'] = [doc['taxid']]

return doc
initiate lineage with information we have in the current doc
lineage = [doc['taxid'], doc['parent_taxid']]
while lineage[-1] != 1:

parent = self.cache[lineage[-1]]

lineage.append(parent)
doc['lineage'] = lineage
return doc

def process(self,docs):
for doc in docs:
doc = self.get_lineage(doc)
yield doc

Let’s use that mapper in TaxonomyDataBuider’s post_merge method. The signature is the same as merge() method
(what’s actually called from the hub) but we just need the batch_size one: we’re going to grab documents from the
merged collection in batch, process them and update them in batch as well. It’s going to be much faster than dealing
one document at a time. To do so, we’ll use doc_feeder utility function:

from biothings.utils.mongo import doc_feeder, get_target_db
from biothings.hub.databuild.builder import DataBuilder
from biothings.hub.dataload.storage import UpsertStorage

from databuild.mapper import LineageMapper
import config
import logging

class TaxonomyDataBuilder(DataBuilder):

def post_merge(self, source_names, batch_size, job_manager):
get the lineage mapper
mapper = LineageMapper (name="1ineage")
load cache (it's being loaded automatically
as it's not part of an upload process
mapper.load()

create a storage to save docs back to merged collection
db = get_target_db()

col_name = self.target_backend.target_collection.name
storage = UpsertStorage(db,col_name)

for docs in doc_feeder(self.target_backend.target_collection, step=batch_size,.
—inbatch=True):
docs = mapper.process(docs)
storage.process(docs,batch_size)

Since we’re using the mapper manually, we need to load the cache

* db and col_name are used to create our storage engine. Builder has an attribute called target_backend (a
biothings.hub.dataload.backend.TargetDocMongoBackend object) which can be used to reach the col-

108 Chapter 6. Quick Start

BioThings SDK

lection we want to work with.

* doc_feeder iterates over all the collection, fetching documents in batch. inbatch=True tells the function to
return data as a list (default is a dict indexed by _id).

* those documents are processed by our mapper, setting the lineage information and then are stored using our
UpsertStorage object.

Note: post_merge actually runs within a thread, so any calls here won’t block the execution (ie. won’t block the
asyncio event loop execution)

Let’s run this on our merged collection. We don’t want to merge everything again, so we specify the step we’re interested
in and the actual merged collection (target_name)

hub> merge(“mytaxonomy”,steps="post”,target_name=""mytaxonomy_test”) [1] RUN {0.0s}
merge(“mytaxonomy”,steps="post”,target_name=""mytaxonomy_test”)

After a while, process is done. We can test our updated data:

> use tutorial
switched to db tutorial
> db.mytaxonomy_test.find({_id:96063})
{
"_id" : 9606,
"taxid" : 9606,
"common_name" : "man",
"other_names" : [
"humans"
ie
"uniprot_name" : "homo sapiens",
"rank" : "species",
"lineage" : [9606,9605,207598,9604,...,131567,1],
"genbank_common_name" : "human",
"scientific_name" : "homo sapiens",
"has_gene" : true,
"parent_taxid" : 9605,
"authority" : [
"homo sapiens linnaeus, 1758"

]

OK, we have new lineage information (truncated for sanity purpose). Merged collection is ready to be used. It can be
used for instance to create and send documents to an ElasticSearch database. This is what’s actually occuring when
creating a BioThings web-servuce API. That step will be covered in another tutorial.

6.4.7 Indexers

Coming soon!
Full updated and maintained code for this hub is available here: https://github.com/biothings/biothings.species

Also, taxonomy BioThings API can be queried as this URL: http://t.biothings.io

6.4. BioThings Hub 109

https://github.com/biothings/biothings.species
http://t.biothings.io

BioThings SDK

6.5 BioThings Web

In this tutorial we will start a Biothings API and learn to customize it, overriding the default behaviors and adding
new features, using increasingly more advanced techniques step by step. In the end, you will be able to make your
own Biothings API, run other production APIs, like Mygene.info, and additionally, customize and add more features
to those projects.

Attention: Before starting the tutorial, you should have the biothings package installed, and have an Elasticsearch
running with only one index populated with this dataset using this mapping. You may also need a JSON Formatter
browser extension for the best experience following this tutorial. (For Chrome)

6.5.1 1. Starting an API server

First, assuming your Elasticsearch service is running on the default port 9200, we can run a Biothings API with all
default settings to explore the data, simply by creating a config.py under your project folder. After creating the file,
run python -m biothings.web to start the API server. You should be able to see the following console output:

[T 211130 22:21:57 launcher:28] Biothings API 0.10.0
[T 211130 22:21:57 configs:86] <module 'config' from 'C:\\Users\\Jerry\\code\\biothings.
—tutorial\\config.py'>
[INFO biothings.web.connections:31] <Elasticsearch([{'host': 'localhost', 'port': 9200}
~]1)>
[INFO biothings.web.connections:31] <AsyncElasticsearch([{'host': 'localhost', 'port':.
9200} 1)>
[INFO biothings.web.applications:137] API Handlers:
[('"/"', <class 'biothings.web.handlers.services.FrontPageHandler'>, {}),
('/status', <class 'biothings.web.handlers.services.StatusHandler'>, {}),
('/metadata/fields/?', <class 'biothings.web.handlers.query.MetadataFieldHandler'>,
{1,
('/metadata/?"', <class 'biothings.web.handlers.query.MetadataSourceHandler'>, {}),
('/vl/spec/?', <class 'biothings.web.handlers.services.APISpecificationHandler'>, {}
=),
('"/vl/doc(?:/([~/1+))?/?", <class 'biothings.web.handlers.query.BiothingHandler'>, {
—'biothing_type': 'doc'}),
('/vl/metadata/fields/?', <class 'biothings.web.handlers.query.MetadataFieldHandler'>
-, 1B,
('/vl/metadata/?', <class 'biothings.web.handlers.query.MetadataSourceHandler'>, {}),
('/vl/query/?', <class 'biothings.web.handlers.query.QueryHandler'>, {})]
[INFO biothings.web.launcher:99] Server is running on "0.0.0.0:8000"...
[INFO biothings.web.connections:25] Elasticsearch Package Version: 7.13.4
[INFO biothings.web.connections:27] Elasticsearch DSL Package Version: 7.3.0
[INFO biothings.web.connections:51] localhost:9200: docker-cluster 7.9.3

Note the console log shows the API version, the config file it uses, its database connections, HTTP routes, service port,
important python dependency package versions, as well as the database cluster details.

Note: The cluster detail appears as the last line, sometimes with a delay, because it is scheduled asynchronously
at start time, but executed later after the main program has launched. The default implementation of our application
is asynchronous and non-blocking based on asyncio and tornado.ioloop interface. The specific logic in this case is
implemented in the biothings.web.connections module.

110 Chapter 6. Quick Start

https://pypi.org/project/biothings/
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://github.com/biothings/biothings.api/blob/master/tests/web/handlers/test_data.ndjson
https://github.com/biothings/biothings.api/blob/master/tests/web/handlers/test_data_index.json
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa
https://www.tornadoweb.org/en/stable/guide/async.html
https://docs.python.org/3/library/asyncio.html
https://www.tornadoweb.org/en/stable/ioloop.html

BioThings SDK

Of all the information provided, note that it says the server is running on port 8000, this is the default port we use when
we start a Biothings API. It means you can acccess the API by opening http://localhost:8000/ in your browser in most
of the cases.

Note: If this port is occupied, you can pass the “port” parameter during startup to change it, for example, running
python -m biothings.web --port=9000. The links in the tutorial assume the services is running on the default
port 8000. If you are running the service on a differnt port. You need to modify the URLSs provided in the tutorial
before opening in the browser.

Now open the browser and access localhost:8000, we should be able to see the biothings welcome page, showing the
public routes in regex formats reading like:

/

/status
/metadata/fields/?
/metadata/?

/v1/spec/?
/vl/doc(?:/(C[*/1+))7?/?
/vl/metadata/fields/?
/vl/metadata/?
/v1l/query/?

6.5.2 2. Exploring an API endpoint

The last route on the welcome page shows the URL pattern of the query APIL. Let’s use this pattern to access the
query endpoint. Accessing http://localhost:8000/v1/query/ returns a JSON document containing 10 results from our
elasticsearch index.

Let’s explore some Biothings API features here, adding a query parameter “fields” to limit the fields returned by the
API, and another parameter “‘size” to limit the returned document number. If you used the dataset mentioned at the start
of the tutorial, accessing http://localhost:8000/v1/query?fields=symbol,alias,name&size=1 should return a document
like this:

{
"took": 15,
"total": 1030,
"max_score": 1,
"hits": [
{
"_id": "1017",
"_score": 1,
"alias": [
"CDKN2",
"p33(CDK2)"
ie
"name": "cyclin dependent kinase 2",
"symbol": "CDK2"
}
]
}

[P

The most commonly used parameter is the “q” parameter, try http://localhost:8000/v 1/query?q=cdk?2 and see all the

@ 99

returned results contain “cdk2”, the value specified for the “q” parameter.

6.5. BioThings Web 111

http://localhost:8000/
https://en.wikipedia.org/wiki/Regular_expression
http://localhost:8000/v1/query/
http://localhost:8000/v1/query?fields=symbol,alias,name&size=1
http://localhost:8000/v1/query?q=cdk2

BioThings SDK

Note: For a list of the supporting parameters, visit Biothings API Specifications. The documentation for our most
popular service https://mygene.info/ also covers a lot of features also available in all biothings applications. Read more
on Gene Query Service and Gene Annotation Service.

6.5.3 3. Customizing an API through the config file

In the previous step, we tested document exploration by search its content. Is there a way to access individual documents
directly by their “_id” or other id fields? We can look at the annotation endpoint doing exactly that.

By default, this endpoint is accessible by an URL pattern like this: /<ver>/doc/<_id> where “ver” refers to the API
version. In our case, if we want to access a document with an id of “1017”, one of those doc showing up in the previous
example, we can try: http://localhost:8000/v1/doc/1017

Note: To configure a different API version other than “v1” for your program, add a prefix to all API patterns, like
/api/<ver>/..., or remove these patterns, make changes in the config file modifying the settings prefixed with “APP”,
as those control the web application behavior. A web application is basically a collection of routes and settings that
can be understood by a web server. See biothings.web.settings.default source code to look at the current
configuration and refer to biothings.web.applications to see how the settings are turned to routes in different
web frameworks.

In this dataset, we know the document type can be best described as “gene”’s. We can enable a widely-used feature,
document type URL templating, by providing more information to the biothings app in the config.py file. Write the
following lines to the config file:

ES_HOST = "localhost:9200" # optional
ES_INDICES = {"gene": "<your index name>"}

ANNOTATION_DEFAULT_SCOPES = ["_id", "symbol"]

Note: The ES_HOST setting is a common parameter that you see in the config file. Although it is not making a difference
here, you can configure the value of this setting to ask biothings.web to connect to a different Elasticsearch server, maybe
hosted remotely on the cloud. The ANNOTATION_DEFAULT_SCOPES setting specifies the document fields we consider
as the id fields. By default, only the “_id” field in the document, a must-have field in Elasticsearch, is considered the
biothings id field. We additionally added the “symbol” field, to allow the user to it to find documents in this demo API.

Restart your program and see the annotation route is now prefixed with /v1/gene if you pay close attention to the console
log. Now try the following URL:

http://localhost:8000/v1/gene/1017
http://localhost:8000/v1/gene/CDK?2

See that using both of the URLs can take you straight to the document previously mentioned. Note using the symbol
field “CDK2” may yield multiple documents because multiple documents may have the same key-value pair. This also
means “symbol” may not be a good choice of the key field we want to support in the URL.

These two endpoints, annotation and query, are the pillars for Biothings API. You can additionally customize these
endpoints to work better with your data.

112 Chapter 6. Quick Start

https://biothings.io/specs/
https://mygene.info/
https://docs.mygene.info/en/latest/doc/query_service.html
https://docs.mygene.info/en/latest/doc/annotation_service.html
http://localhost:8000/v1/doc/1017
http://localhost:8000/v1/gene/1017
http://localhost:8000/v1/gene/CDK2

BioThings SDK

For example, if you think our returned result by default from the query endpoint is too verbose and we want to only
include limited information unless the user specifically asked for more, we can set a default “fields” value, for this
parameter used in the previous example. Open config.py and add:

from biothings.web.settings.default import QUERY_KWARGS
QUERY_KWARGS['*']['_source']['default'] = ['name', 'symbol', 'taxid', 'entrezgene']

Restart your program after changing the config file and visit http://localhost:8000/v1/query, see the effect of specifying
default fields to return. Like this:

{
"took": 9,
"total": 100,
"max_score": 1,
"hits": [
{
"_id": "1017",
"_score": 1,
"entrezgene": "1017",
"name": "cyclin dependent kinase 2",
"symbol": "CDK2",
"taxid": 9606
B
{
"_id": "12566",
"_score": 1,
"entrezgene": "12566",
"name": "cyclin-dependent kinase 2",
"symbol": "Cdk2",
"taxid": 10090
p
{
"_id": "362817",
"_score": 1,
"entrezgene": "362817",
"name": "cyclin dependent kinase 2",
"symbol": "Cdk2",
"taxid": 10116
B
]
}

6.5.4 4. Customizing an API through pipeline stages

In the previous example, the numbers in the “entrezgene” field are typed as strings. Let’s modify the internal logic
called the query pipeline to convert these values to integers just to show what we can do in customization.

Note: The pipeline is one of the biothings.web.services. It defines the intermediate steps or stages we take to
execute a query. See biothings.web.query to learn more about the individual stages.

Add to config.py:

6.5. BioThings Web 113

http://localhost:8000/v1/query

BioThings SDK

[ES_RESULT_TRANSFORM — "pipeline,MyFormatter" }

And create a file pipeline.py to include:

from biothings.web.query import ESResultFormatter

class MyFormatter (ESResultFormatter):
def transform_hit(self, path, doc, options):

if path == '' and 'entrezgene' in doc: # root level
try:
doc['entrezgene'] = int(doc['entrezgene'])
except:

Commit your changes and restart the webserver process. Run some queries and you should be able to see the “entrez-
gene” field now showing as integers:

{
"_id": "1017",
"_score": 1,
"entrezgene": 1017, # instead of the quoted "1017" (str)
"name": "cyclin dependent kinase 2",
"symbol": "CDK2",
"taxid": 9606
}

In this example, we made changes to the query transformation stage, controlled by the biothings.web.query.
formatter.ESResultFormatter class, this is one of the three stages that defined the query pipeline. The two stages
coming before it are represented by biothings.web.query.engine.AsyncESQueryBackend and biothings.
web.query.builder.ESQueryBuilder.

Let’s try to modify the query builder stage to add another feature. We’ll incorporate domain knowledge here to deliver
more user-friendly seach result by scoring the documents with a few rules to increase result relevancy. Additionally
add to the pipeline.py file

from biothings.web.query import ESQueryBuilder
from elasticsearch_dsl import Search

class MyQueryBuilder (ESQueryBuilder):
def apply_extras(self, search, options):

search = Search().query(
"function_score",
query=search.query,
functions=[
{"filter": {"term": {"name": "pseudogene"}}, "weight": "0.5"}, #.
—.downgrade
{"filter": {"term": {"taxid": 9606}}, "weight": "1.55"},
{"filter": {"term": {"taxid": 10090}}, "weight": "1.3"},
{"filter": {"term": {"taxid": 10116}}, "weight": "1.1"}

(continues on next page)

114 Chapter 6. Quick Start

BioThings SDK

(continued from previous page)

], score_mode="first")

return super().apply_extras(search, options)

Make sure our application can pick up the change by adding this line to config.py:

[ES_QUERY_BUILDER = "pipeline.MyQueryBuilder"

Note: We wrapped our original query logic in an Elasticsearch compound query fucntion score query. For more
on writing python-friendly Elasticsearch queries, see Elasticsearch DSL package, one of the dependencies used in
biothings.web.

Save the file and restart the webserver process. Search something and if you compare with the application before, you
may notice some result rankings have changed. It is not easy to pick up this change if you are not familiar with the data,
visit http://localhost:8000/v 1/query?q=kinase&rawquery instead and see that our code was indeed making a difference
and get passed to elasticsearch, affecting the query result ranking. Notice the “rawquery” is a feature in our program
to intercept the raw query we sent to elasticsearch for debugging.

6.5.5 5. Customizing an API through pipeline services

Taking it one more step further, we can add more procedures or stages to the pipeline by overwriting the Pipeline class.
Add to the config file:

[ES_QUERY_PIPELINE = "pipeline.MyQueryPipeline"

and add the following code to pipeline.py:

class MyQueryPipeline (AsyncESQueryPipeline):

async def fetch(self, id, **options):

if id == "tutorial":
res = {"_welcome": "to the world of biothings.api"}
res.update(await super().fetch("1017", **options))
return res

res = await super().fetch(id, **options)

return res

Now we made ourselves a tutorial page to show what annotation results can look like, by visiting http://localhost:8000/
v1/gene/tutorial, you can see what http://localhost:8000/v1/gene/1017 would typically give you, and the additional
welcome message:

{

"_welcome": "to the world of biothings.api",
"_id": "1017",

"_version": 1,

"entrezgene": 1017,

"name": "cyclin dependent kinase 2",
"symbol": "CDK2",

(continues on next page)

6.5. BioThings Web 115

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html
https://elasticsearch-dsl.readthedocs.io/en/latest/
http://localhost:8000/v1/query?q=kinase&rawquery
http://localhost:8000/v1/gene/tutorial
http://localhost:8000/v1/gene/tutorial
http://localhost:8000/v1/gene/1017

BioThings SDK

(continued from previous page)

"taxid": 9606

Note: In this example, we modified the query pipeline’s “fetch” method, the one used in the annotation endpoint, to
include some additional logic before executing what we would typically do. The call to the “super” function executes
the typical query building, executing and formatting stages.

6.5.6 6. Customizing an API through the web app

The examples above demonstrated the customizations you can make on top of our pre-defined APIs, for the most
demanding tasks, you can additionally add your own API routes to the web app.

Modify the config file as a usual first step. Declare a new route by adding:

from biothings.web.settings.default import APP_LIST

APP_LIST = [

*APP_LIST, # keep the original ones

(r"/ /echo/(.+)", "handlers.EchoHandler"),
]

Let’s make an echo handler that just echos what the user puts in the URL. Create a handlers.py and add:

from biothings.web.handlers import BaseAPIHandler

class EchoHandler (BaseAPIHandler):

def get(self, text):
self.write({
"status": "ok",
"result": text

D)

Now we have added a completely new feature not based on any of the existing biothings offerings, which can be as
simple and as complex as you need. Visiting http://localhost:8000/v1/echo/hello would give you:

{
"status": "ok",
"result": "hello"

}

in which case, the “hello” in “result” field is the input we give the application in the URL.

116 Chapter 6. Quick Start

http://localhost:8000/v1/echo/hello

BioThings SDK

6.5.7 7. Customizing an API through the app launcher

Another convenient place to customize the API is to have a launching module, typically called index.py, and pass
parameters to the starting function, provided as biothings.web.launcher.main(). Create an index.py in your
project folder:

from biothings.web.launcher import main
from tornado.web import RedirectHandler

if _name__ == '__main__':
main([
(r"/v2/query(.*)", RedirectHandler, {"url": "/v1/query "B
1, {
"static_path": "static"
b

Create another folder called “static” and add a file of random content named “file.txt” under the newly created static
folder. In this step, we added a redirection of a later-to-launch v2 query API, that we temporarily set to redirect to the
vl API and passed a static file configuration that asks tornado to serve files under the static folder we specified to the
tornado webserver, the default webserver we use. The static folder is named “static”” and contains only one file in this
example.

Note: For more on configuring route redirections and other application features in tornado, see RedirectHandler and
Application configuration.

After making the changes, visiting http://localhost:8000/v2/query/?q=cdk2 would direct you back to http://localhost:
8000/v1/query/?q=cdk2 and by visiting http://localhost:8000/static/file.txt you should see the random content you pre-
viously created. Note in this step, you should run the python launcher module directly by calling something like python
index.py instead of running the first command we introduced. Running the launcher directly is also how we start most
of our user-facing products that require complex configurations, like http://mygene.info/. ts code is publicly available
at https://github.com/biothings/mygene.info under the Biothings Organization.

6.5.8 The End

Finishing this tutorial, you have completed the most common steps to customize biothings.api. The customization starts
from passing a different parameter at launch time and evolve to modifying the app code at different levels. I hope you
feel confident running biothings API now and please check out the documentation page for more details on customizing
APIs.

6.6 DataTransform Module

A key problem when merging data from multiple data sources is finding a common identifier. To ameliorate this
problem, we have written a DataTransform module to convert identifiers from one type to another. Frequently, this
conversion process has multiple steps, where an identifier is converted to one or more intermediates before having its
final value. To describe these steps, the user defines a graph where each node represents an identifier type and each
edge represents a conversion. The module processes documents using the network to convert their identifiers to their
final form.

A graph is a mathematical model describing how different things are connected. Using our model, our module is
connecting different identifiers together. Each connection is an identifier conversion or lookup process. For example, a
simple graph could describe how pubchem identifiers could be converted to drugbank identifiers using MyChem.info.

6.6. DataTransform Module 117

https://www.tornadoweb.org/en/stable/web.html#tornado.web.RedirectHandler
https://www.tornadoweb.org/en/stable/web.html#tornado.web.Application.settings
http://localhost:8000/v2/query/?q=cdk2
http://localhost:8000/v1/query/?q=cdk2
http://localhost:8000/v1/query/?q=cdk2
http://localhost:8000/static/file.txt
http://mygene.info/
https://github.com/biothings/mygene.info
https://github.com/biothings

BioThings SDK

6.6.1 Graph Definition

The following graph facilitates conversion from inchi to inchikey using pubchem as an intermediate:

from biothings.hub.datatransform import MongoDBEdge
import networkx as nx

graph_mychem = nx.DiGraph()

HAHRG R AR RAARA AR AR AR ARARAAARA AR AR AR AR RA AR AR AR ARARARRRA AR AR AARA AR AR AR AR
DataTransform Nodes and Edges

BHRAHRARAA A A A AR ARG A A AR ARG A A A AARRRRAAAAA A A A AR AR A A A
graph_mychem.add_node('inchi')

graph_mychem.add_node('pubchem")

graph_mychem.add_node('inchikey")

graph_mychem.add_edge('inchi', 'pubchem',
object=MongoDBEdge('pubchem', 'pubchem.inchi', 'pubchem.cid'))

graph_mychem.add_edge('pubchem', 'inchikey"',
object=MongoDBEdge ('pubchem', 'pubchem.cid', 'pubchem.inchi_key'))

To setup a graph, one must define nodes and edges. There should be a node for each type of identifier and an edge which
describes how to convert from one identifier to another. Node names can be arbitrary; the user is allowed to chose what
an identifier should be called. Edge classes, however, must be defined precisely for conversion to be successful.

6.6.2 Edge Classes

The following edge classes are supported by the DataTransform module. One of these edge classes must be selected
when defining an edge connecting two nodes in a graph.

MongoDBEdge

class biothings.hub.datatransform.MongoDBEdge (collection_name, lookup, field, weight=1, label=None,
check_index=True)

The MongoDBEdge uses data within a MongoDB collection to convert one identifier to another. The input
identifier is used to search a collection. The output identifier values are read out of that collection:

Parameters
* collection_name (str)— The name of the MongoDB collection.
* lookup (str) — The field that will match the input identifier in the collection.
» field (str)— The output identifier field that will be read out of matching documents.

» weight (int) — Weights are used to prefer one path over another. The path with the lowest
weight is preferred. The default weight is 1.

The example above uses the MongoDBEdge class to convert from inchi to inchikey.

118 Chapter 6. Quick Start

BioThings SDK

MyCheminfoEdge

class biothings.hub.datatransform.MyChemInfoEdge (lookup, field, weight=1, label=None, url=None)
The MyChemlInfoEdge uses the MyChem.info API to convert identifiers.

Parameters
* lookup (str) — The field in the API to search with the input identifier.
e field (str) — The field in the API to convert to.

» weight (int) — Weights are used to prefer one path over another. The path with the lowest
weight is preferred. The default weight is 1.

This example graph uses the MyChemlInfoEdge class to convert from pubchem to inchikey. The pubchem.cid and
pubchem.inchi_key fields are returned by MyChem.info and are listed by /metadata/fields.

from biothings.hub.datatransform import MyChemInfoEdge
import networkx as nx

graph_mychem = nx.DiGraph()

HARH AR HRHHRH AR RAARH AR RAARH AR RHARH AR RAARA AR RAARARAARH AR AR RA AR RAARA AR RS
DataTransform Nodes and Edges

HAHRGRARFHARAARARR AR AR AR A RARA AR AR AR AR ARA AR AR AR AR ARARARARA AR AR AR ARARARR AR AR AR
graph_mychem.add_node ('pubchem')

graph_mychem.add_node('inchikey"')

graph_mychem.add_edge('pubchem', 'inchikey',
object=MyChemInfoEdge('pubchem.cid', 'pubchem.inchi_key'))

MyGenelnfoEdge

class biothings.hub.datatransform.MyGeneInfoEdge (lookup, field, weight=1, label=None, url=None)
The MyGenelnfoEdge uses the MyGene.info API to convert identifiers.

Parameters
* lookup (str) — The field in the API to search with the input identifier.
o field (str) — The field in the API to convert to.

» weight (int) — Weights are used to prefer one path over another. The path with the lowest
weight is preferred. The default weight is 1.

RegExEdge

class biothings.hub.datatransform.RegExEdge (from_regex, to_regex, weight=1, label=None)

The RegExEdge allows an identifier to be transformed using a regular expression. POSIX regular expressions
are supported.

Parameters
» from_regex (str) — The first parameter of the regular expression substitution.

* to_regex (str) — The second parameter of the regular expression substitution.

6.6. DataTransform Module 119

http://mychem.info/v1/metadata/fields

BioThings SDK

» weight (int) — Weights are used to prefer one path over another. The path with the lowest
weight is preferred. The default weight is 1.

This example graph uses the RegExEdge class to convert from pubchem to a shorter form. The CID: prefix is removed
by the regular expression substitution:

from biothings.hub.datatransform import RegExEdge
import networkx as nx

graph = nx.DiGraph()

i i i i i i
DataTransform Nodes and Edges

HAHRH AR AR AR AHRARA AR AR AR AR A RARA R RR AR R AR RA ARG AR R AR RAARARARARA AR R AR RAAA R RA AR
graph.add_node('pubchem")

graph.add_node('pubchem-short')

graph.add_edge('pubchem', 'pubchem-short',
object=RegExEdge('CID: ", '"))

6.6.3 Example Usage

A complex graph developed for use with MyChem.info is shown here. This file includes a definition of the MyChemKey-
Lookup class which is used to call the module on the data source. In general, the graph and class should be supplied to
the user by the BioThings.api maintainers.

To call the DataTransform module on the Biothings Uploader, the following definition is used:

keylookup = MyChemKeyLookup (
[("inchi', 'pharmgkb.inchi'),
('pubchem', 'pharmgkb.xrefs.pubchem.cid'),
('drugbank', 'pharmgkb.xrefs.drugbank'),
('chebi', 'pharmgkb.xrefs.chebi')])

def load_data(self,data_folder):
input_file = os.path.join(data_folder, "drugs.tsv")
return self.keylookup(load_data) (input_file)

The parameters passed to MyChemKeyLookup are a list of input types. The first element in an input type is the node
name that must match the graph. The second element is the field in dotstring notation which should describe where the
identifier should be read from in a document.

The following report was reported when using the DataTransform module with PharmGKB. Reports have a section for
document conversion and a section describing conversion along each edge. The document section shows which inputs
were used to produce which outputs. The edge section is useful in debugging graphs, ensuring that different conversion
edges are working properly.

{
'doc_report': {
"('inchi', 'pharmgkb.inchi')-->inchikey": 1637,
"('pubchem', 'pharmgkb.xrefs.pubchem.cid')-->inchikey": 46
"('drugbank', 'pharmgkb.xrefs.drugbank')-->inchikey": 41,
"('drugbank', 'pharmgkb.xrefs.drugbank')-->drugbank": 25,

(continues on next page)

120 Chapter 6. Quick Start

http://mychem.info/
https://github.com/biothings/mychem.info/blob/master/src/hub/datatransform/keylookup.py

BioThings SDK

(continued from previous page)
'edge_report': {
'inchi-->chembl': 1109,
"inchi-->drugbank': 319,
'inchi-->pubchem': 209,
'chembl-->inchikey': 1109,
'drugbank-->inchikey': 360,
'pubchem-->inchikey': 255
'drugbank-->drugbank': 25,
},
}

As an example, the number identifiers converted from inchi to inchikey is 1637. However, these conversions are done
via intermediates. One of these intermediates is chembl and the number of identifiers converted from inchi to chembl
is 319. Some identifiers are converted directly from pubchem and drugbank. The inchi field is used to lookup several
intermediates (chembl, drugbank, and pubchem). Eventually, most of these intermediates are converted to inchikey.

6.6.4 Advanced Usage - DataTransform MDB

The DataTransformMDB module was written as a decorator class which is intended to be applied to the load_data
function of a Biothings Uploader. This class can be sub-classed to simplify applification within a Biothings service.

class biothings.hub.datatransform.DataTransformMDB (graph, *args, **kwargs)

Convert document identifiers from one type to another.

The DataTransformNetworkX module was written as a decorator class which should be applied to the load_data
function of a Biothings Uploader. The load_data function yields documents, which are then post processed by
call and the ‘id’ key conversion is performed.

Parameters
 graph — nx.DiGraph (networkx 2.1) configuration graph

» input_types — A list of input types for the form (identifier, field) where identifier matches
a node and field is an optional dotstring field for where the identifier should be read from
(the default is ‘_id’).

* output_types (1ist (str)) — A priority list of identifiers to convert to. These identifiers
should match nodes in the graph.

e id_priority_list (list(str))— A priority list of identifiers to to sort input and output
types by.

e skip_on_failure (bool) — If True, documents where identifier conversion fails will be
skipped in the final document list.

» skip_w_regex (bool) — Do not perform conversion if the identifier matches the regular
expression provided to this argument. By default, this option is disabled.

e skip_on_success (bool) — If True, documents where identifier conversion succeeds will
be skipped in the final document list.

e idstruct_class (class) — Override an internal data structure used by the this module
(advanced usage)

» copy_from_doc (bool)—If true then an identifier is copied from the input source document
regardless as to weather it matches an edge or not. (advanced usage)

An example of how to apply this class is shown below:

6.6. DataTransform Module 121

BioThings SDK

keylookup = DataTransformMDB(graph, input_types, output_types,
skip_on_failure=False, skip_w_regex=None,
idstruct_class=IDStruct, copy_from_doc=False)
def load_data(self,data_folder):
input_file = os.path.join(data_folder, "drugs.tsv")
return self.keylookup(load_data) (input_file)

It is possible to extend the DataTransformEdge type and define custom edges. This could be useful for example if the
user wanted to define a computation that transforms one identifier to another. For example inchikey may be computed
directly by performing a hash on the inchi identifier.

6.6.5 Document Maintainers

* Greg Taylor (@gregtaylor)
¢ Chunlei Wu (@chunleiwu)

6.7 biothings.web

Generate a customized BioThings API given a supported database.

biothings.web.launcher: Launch web applications in different environments. biothings.web.applications: HTTP web
application over data services below. biothings.web.services & query: Data services built on top of connections. bio-
things.web.connections: Elasticsearch, MongoDB and SQL database access.

6.7.1 Layers

biothings.web.launcher

Biothings API Launcher

In this module, we have three framework-specific launchers and a command-line utility to provide both programmatic
and command-line access to start Biothings APIs.

class biothings.web.launcher.BiothingsAPIBaseLauncher (config=None)
Bases: object

get_appQ)
get_server()
start (port=8000)

biothings.web.launcher.BiothingsAPILauncher
alias of TornadoAPILauncher

class biothings.web.launcher.FastAPILauncher (config=None)
Bases: BiothingsAPIBaseLauncher

get_appQ)

class biothings.web.launcher.FlaskAPILauncher (config=None)
Bases: BiothingsAPIBaseLauncher

122 Chapter 6. Quick Start

BioThings SDK

get_app(O
get_server()
start (port=8000, dev=True)
class biothings.web.launcher.TornadoAPILauncher (config=None)
Bases: BiothingsAPIBaseLauncher
get_app(O
get_server()
start (port=8000)

static use_curl()

Use curl implementation for tornado http clients. More on https://www.tornadoweb.org/en/stable/
httpclient.html

biothings.web.launcher.main(app_handlers=None, app_settings=None, use_curl=False)
Start a Biothings API Server

biothings.web.applications

Biothings Web Applications -

define the routes and handlers a supported web framework would consume basing on a config file, typically named
config.py, enhanced by biothings.web.settings.configs.

The currently supported web frameworks are Tornado, Flask, and FastAPI.

The biothings.web. launcher can start the compatible HTTP servers basing on their interface. And the web appli-
cations delegate routes defined in the config file to handlers typically in biothings.web.handlers.

Web Framework Interface Handlers

Tornado Tornado biothings.web.handlers.*
Flask WSGI biothings.web.handlers._flask
FastAPI ASGI biothings.web.handlers._fastapi

biothings.web.applications.BiothingsAPI
alias of TornadoBiothingsAPI

class biothings.web.applications.FastAPIBiothingsAPI
Bases: object

classmethod get_app(config)

class biothings.web.applications.FlaskBiothingsAPI
Bases: object
classmethod get_app(config)

class biothings.web.applications.TornadoBiothingsAPI(*args, **kwargs)
Bases: Application

6.7. biothings.web 123

https://www.tornadoweb.org/en/stable/httpclient.html
https://www.tornadoweb.org/en/stable/httpclient.html
https://www.tornadoweb.org/en/stable/index.html
https://flask.palletsprojects.com/en/2.0.x/
https://fastapi.tiangolo.com/

BioThings SDK

classmethod get_app(config, settings=None, handlers=None)

Return the tornado.web.Application defined by this config. Additional settings and handlers are accepted
as parameters.

biothings.web.applications.load_class(kis)

biothings.web.services

biothings.web.services.query

A Programmatic Query API supporting Biothings Query Syntax.

From an architecture perspective, biothings.web. query is one of the data services, built on top of the biothings.
web.connections layer, however, due to the complexity of the module, it is escalated one level in organization to
simplify the overall folder structure. The features are available in biothings.web.services.query namespace via import.

biothings.web.services.health

class biothings.web.services.health.DBHealth(client)
Bases: object

check (**kwargs)

class biothings.web.services.health.ESHealth(client, payload=None)
Bases: DBHealth
async async_check(verbose=False)
check ()

class biothings.web.services.health.MongoHealth(client)
Bases: DBHealth
check (**kwargs)

class biothings.web.services.health.SQLHealth(client)
Bases: DBHealth
check (**kwargs)

biothings.web.services.metadata

class biothings.web.services.metadata.BiothingHubMeta (**metadata)
Bases: BiothingMetaProp

to_dict()

class biothings.web.services.metadata.BiothinglLicenses (licenses)
Bases: BiothingMetaProp
to_dict()

class biothings.web.services.metadata.BiothingMappings (properties)
Bases: BiothingMetaProp

124 Chapter 6. Quick Start

BioThings SDK

to_dict()

class biothings.web.services.metadata.BiothingMetaProp
Bases: object

to_dict()

class biothings.web.services.metadata.BiothingsESMetadata (indices, client)
Bases: BiothingsMetadata

refresh(biothing_type=None)
property types

update (biothing_type, info, count)
Read ES index mappings for the corresponding biothing_type, Populate datasource info and field properties
from mappings.

class biothings.web.services.metadata.BiothingsMetadata
Bases: object

get_licenses (biothing_type)
get_mappings (biothing_type)
get_metadata(biothing_type)
async refresh(biothing_type)

class biothings.web.services.metadata.BiothingsMongoMetadata (collections, client)
Bases: BiothingsMetadata

get_licenses (biothing_type)
get_mappings (biothing_type)
async refresh(biothing_type)
property types

class biothings.web.services.metadata.BiothingsSQLMetadata (tables, client)
Bases: BiothingsMetadata

async refresh(biothing_type)

property types

biothings.web.services.namespace

class biothings.web.services.namespace.BiothingsDBProxy
Bases: object

Provide database-agnostic access to common biothings service components, for single database application.
configure(db)

class biothings.web.services.namespace.BiothingsNamespace (config)
Bases: object

biothings.web.services.namespace.load_class(kls)

6.7. biothings.web 125

BioThings SDK

biothings.web.connections

biothings.web.connections.get_es_client (hosts=None, async_=False, **settings)
Enhanced ES client initialization.

Additionally support these parameters:
async_: use AsyncFElasticserach instead of Elasticsearch. aws: setup request signing and provide reason-
able ES settings

to access AWS OpenSearch, by default assuming it is on HTTPS.

sniff: provide resonable default settings to enable client-side
LB to an ES cluster. this param itself is not an ES param.

biothings.web.connections.get_mongo_client (uri, **settings)
biothings.web.connections.get_sql_client (uri, **settings)

Additionally, you can reuse connecions initialized with the same parameters by getting it from the connection pools
every time. Here’s the connection pool interface signature:

class biothings.web.connections._ClientPool (client_factory, async_factory, callback=None)
Bases: object

get_async_client (uri, **settings)
get_client (uri, **settings)
static hash(config)

The module has already initialized connection pools for each supported databases. Directly access these pools without
creating by yourselves.

biothings.web.connections.es = <biothings.web.connections._ClientPool object>
biothings.web.connections.sql = <biothings.web.connections._ClientPool object>

biothings.web.connections.mongo = <biothings.web.connections._ClientPool object>

6.7.2 Components
biothings.web.analytics

biothings.web.analytics.channels

class biothings.web.analytics.channels.Channel
Bases: object

handles (event)
send (event)

class biothings.web.analytics.channels.GA4Channel (measurement_id, api_secret, uid_version=1)
Bases: Channel

handles (event)

126 Chapter 6. Quick Start

BioThings SDK

send (payload)

Limitations: https://developers.google.com/analytics/devguides/collection/protocol/ga4/sending-events?
client_type=gtag

class biothings.web.analytics.channels.GAChannel (tracking_id, uid_version=1)
Bases: Channel

handles (event)
send (payload)

class biothings.web.analytics.channels.SlackChannel (hook_urls)
Bases: Channel

handles (event)

send (message)

biothings.web.analytics.events

class biothings.web.analytics.events.Event (dict=None,/, **kwargs)
Bases: UserDict

to_GA4_payload (measurement_id, cid_version=1)
to_GA_payload (tracking_id, cid_version=1)

class biothings.web.analytics.events.GAEvent (dict=None, /, **kwargs)
Bases: Event
to_GA4_payload (measurement_id, cid_version=1)
to_GA_payload (tracking_id, cid_version=1)

class biothings.web.analytics.events.Message (dict=None,/, **kwargs)
Bases: Event

Logical document that can be sent through services. Processable fields: title, body, url, url_text, image, im-
age_altext Optionally define default field values below.

DEFAULTS = {'image_altext': '<IMAGE>', 'title': 'Notification Message',
'url_text': 'View Details'}

to_ADF(Q)

Generate ADF for Atlassian Jira payload. Overwrite this to build differently. https://developer.atlassian.
com/cloud/jira/platform/apis/document/playground/

to_email_payload (sendfrom, sendto)

Build a MIMEMultipart message that can be sent as an email. https://docs.aws.amazon.com/ses/latest/
DeveloperGuide/examples-send-using-smtp.html

to_jira_payload(profile)
Combine notification message with project profile to genereate jira issue tracking ticket request payload.

to_slack_payload()
Generate slack webhook notification payload. https://api.slack.com/messaging/composing/layouts

6.7. biothings.web 127

https://developers.google.com/analytics/devguides/collection/protocol/ga4/sending-events?client_type=gtag
https://developers.google.com/analytics/devguides/collection/protocol/ga4/sending-events?client_type=gtag
https://developer.atlassian.com/cloud/jira/platform/apis/document/playground/
https://developer.atlassian.com/cloud/jira/platform/apis/document/playground/
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/examples-send-using-smtp.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/examples-send-using-smtp.html
https://api.slack.com/messaging/composing/layouts

BioThings SDK

biothings.web.analytics.notifiers

class biothings.web.analytics.notifiers.AnalyticsMixin(application: Application, request:

HTTPServerRequest, **kwargs: Any)

Bases: RequestHandler

on_finish()
Called after the end of a request.

Override this method to perform cleanup, logging, etc. This method is a counterpart to prepare. on_finish
may not produce any output, as it is called after the response has been sent to the client.

class biothings.web.analytics.notifiers.Notifier(settings)

Bases: object

broadcast (event)

biothings.web.handlers

biothings.web.handlers.base

Biothings Web Handlers

biothings.web.handlers.BaseHandler

Supports: - access to biothings namespace - monitor exceptions with Sentry

biothings.web.handlers.BaseAPIHandler

Additionally supports: - JSON and YAML payload in the request body - request arguments standardization
- multi-type output (json, yaml, html, msgpack) - standardized error response (exception -> error template)
- analytics and usage tracking (Google Analytics and AWS) - default common http headers (CORS and
Cache Control)

class biothings.web.handlers.base.BaseAPIHandler (application: Application, request:

HTTPServerRequest, **kwargs: Any)

Bases: BaseHandler, AnalyticsMixin

cache = None

cache_control_template = 'max-age={cache}, public'
format = 'json'

get_template_path()

Override to customize template path for each handler.

By default, we use the template_path application setting. Return None to load templates relative to the
calling file.

initialize(cache=None)

kwargs = {'*': {'format': {'default': 'json', 'enum': ('json', 'yaml', 'html',
'msgpack'), 'type': <class 'str'>}}}

name = '__base__"

128

Chapter 6. Quick Start

BioThings SDK

on_finish()

This is a tornado lifecycle hook. Override to provide tracking features.
options (*args, **kwargs)
prepare()
Called at the beginning of a request before get/post/etc.
Override this method to perform common initialization regardless of the request method.

Asynchronous support: Use async def or decorate this method with .gen.coroutine to make it asyn-
chronous. If this method returns an Awaitable execution will not proceed until the Awaitable is done.

New in version 3.1: Asynchronous support.
set_cache_header (cache value)
set_default_headers()
Override this to set HTTP headers at the beginning of the request.

For example, this is the place to set a custom Server header. Note that setting such headers in the normal
flow of request processing may not do what you want, since headers may be reset during error handling.

write (chunk)
Writes the given chunk to the output buffer.
To write the output to the network, use the flush() method below.

If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be
application/json. (if you want to send JSON as a different Content-Type, call set_header after
callingwrite()).

Note that lists are not converted to JSON because of a potential cross-site security vulnerability. All
JSON output should be wrapped in a dictionary. More details at http://haacked.com/archive/2009/06/25/
json-hijacking.aspx/ and https://github.com/facebook/tornado/issues/ 1009

write_error (status_code, **kwargs)

from tornado.web import Finish, HTTPError

raise HTTPError(404) raise HTTPError(404, reason="document not found”) raise HTTPError(404, None,
{“id”: “-1”}, reason=""document not found”) -> {

“code”: 404, “success”: False, “error’: “document not found” “id”: “-1”

}

class biothings.web.handlers.base.BaseHandler (application: Application, request: HTTPServerRequest,
*rkwargs: Any)

Bases: RequestHandler

property biothings

6.7. biothings.web 129

http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
https://github.com/facebook/tornado/issues/1009

BioThings SDK

biothings.web.handlers.query

Elasticsearch Handlers

biothings.web.handlers.BaseESRequestHandler

Supports: (all features above and) - access to biothing_type attribute - access to ES query pipeline stages
- pretty print elasticsearch exceptions - common control option out_format

Subclasses: - biothings.web.handlers.MetadataSourceHandler - bioth-
ings.web.handlers.MetadataFieldHandler - myvariant.web.beacon.BeaconHandler

biothings.web.handlers.ESRequestHandler

Supports: (all features above and) - common control options (raw, rawquery) - common transform options
(dotfield, always_list...) - query pipeline customization hooks - single query through GET - multiple quers
through POST

Subclasses: - biothings.web.handlers.BiothingHandler - biothings.web.handlers.QueryHandler

class biothings.web.handlers.query.BaseQueryHandler (application: Application, request:

HTTPServerRequest, **kwargs: Any)
Bases: BaseAPTHandler

initialize(biothing_type=None, *args, **kwargs)
prepare()
Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless of the request method.

Asynchronous support: Use async def or decorate this method with .gen.coroutine to make it asyn-
chronous. If this method returns an Awaitable execution will not proceed until the Awaitable is done.

New in version 3.1: Asynchronous support.

write(chunk)
Writes the given chunk to the output buffer.

To write the output to the network, use the flush() method below.

If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be
application/json. (if you want to send JSON as a different Content-Type, call set_header after
calling write()).

Note that lists are not converted to JSON because of a potential cross-site security vulnerability. All
JSON output should be wrapped in a dictionary. More details at http://haacked.com/archive/2009/06/25/
json-hijacking.aspx/ and https://github.com/facebook/tornado/issues/ 1009

class biothings.web.handlers.query.BiothingHandler (application: Application, request:

HTTPServerRequest, **kwargs: Any)

Bases: BaseQueryHandler
Biothings Annotation Endpoint

URL pattern examples:

Hpre}/{ver}/{typ}/? I{pre}/{ver}/{typ }/([M]+)/?

queries a term against a pre-determined field that represents the id of a document, like _id and db-
snp.rsid

GET->{...}or[{...},...]1 POST > [{... },...]

130

Chapter 6. Quick Start

http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
https://github.com/facebook/tornado/issues/1009

BioThings SDK

async get(**kwargs)
name = 'annotation'
async post(**kwargs)

class biothings.web.handlers.query.MetadataFieldHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: BaseQueryHandler

GET /metadata/fields

async get()

kwargs = {'*': {'format': {'default': 'json', 'enum': ('json', 'yaml', 'html’',
'msgpack'), 'type': <class 'str'>}}, 'GET': {'prefix': {'default': None, 'type':
<class 'str'>}, 'raw': {'default': False, 'type': <class 'bool'>}, 'search':

{'default': None, 'type': <class 'str'>}}}
name = 'fields'

class biothings.web.handlers.query.MetadataSourceHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: BaseQueryHandler
GET /metadata

extras(_meta)

Override to add app specific metadata.
async get()
kwargs = {'*': {'format': {'default': 'json', 'enum': ('json', 'yaml', 'html',
'msgpack'), 'type': <class 'str'>}}, 'GET': {'dev': {'default': False, 'type':
<class 'bool'>}, 'raw': {'default': False, 'type': <class 'bool'>}}}

name = 'metadata’

class biothings.web.handlers.query.QueryHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: BaseQueryHandler

Biothings Query Endpoint

URL pattern examples:
/{pre}/{ver}/{typ}/query/? /{pre}/{ver}//query/?
GET -> {...} POST -> [{... }, ...]

async get(**kwargs)

name = 'query'

async post(**kwargs)

6.7. biothings.web 131

BioThings SDK

biothings.web.handlers.services

class biothings.web.handlers.services.APISpecificationHandler (application: Application, request:
HTTPServerRequest, **kwargs:
Any)

Bases: BaseAPIHandler
get()

class biothings.web.handlers.services.FrontPageHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: BaseHandler
get()
get_template_path()
Override to customize template path for each handler.

By default, we use the template_path application setting. Return None to load templates relative to the
calling file.

class biothings.web.handlers.services.StatusHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: BaseHandler
Web service health check
async get()

head ()

biothings.web.options

biothings.web.options.manager

Request Argument Standardization

class biothings.web.options.manager.Converter (**kwargs)
Bases: object

A generic HTTP request argument processing unit. Only perform one level of validation at this moment. The
strict switch controls the type conversion rules.

convert (value)
convert_to (value, to_type)
static str_to_bool (val)
Interpret string representation of bool values.

str_to_int (val)

Convert a numerical string to an integer.

static str_to_list(val)
Cast Biothings-style str to list.

classmethod subclasses(kwargs)

132 Chapter 6. Quick Start

BioThings SDK

static to_type(val, type_)
Native type casting in Python. Fallback approach for type casting.

translate (value)

class biothings.web.options.manager.Existentialist (defdict)
Bases: object
Describes the requirement of the existance of an argument. {

“default”: <object>, “required”: <bool>,

}
inquire(obj)

class biothings.web.options.manager.FormArgCvter (**kwargs)
Bases: Converter

Dedicated argument converter for HTTP body arguments. Additionally support JSON seriealization format as
values. Correspond to arguments received in tornado from

RequestHandler.get_body_argument
See https://www.tornadoweb.org/en/stable/web.html
convert_to (value, to_type)
class biothings.web.options.manager.JsonArgCvter (**kwargs)
Bases: Converter

Dedicated argument converter for JSON HTTP bodys. Here it is used for dict JSON objects, with their first level
keys considered as parameters and their values considered as arguments to process.

May correspond to this tornado implementation: https://www.tornadoweb.org/en/stable/web.html#input

convert_to (value, to_type)

to_type (val, type_)
Native type casting in Python. Fallback approach for type casting.
class biothings.web.options.manager.Locator (defdict)

Bases: object
Describes the location of an argument in ReqArgs. {

“keyword”: <str>, “path”: <int or str>, “alias”: <str or [<str>, ...]>

}
lookin(location)
lookin(path: Path)
lookin(dic: dict)
Find an argument in the specified location. Use directions indicated in this locator.
class biothings.web.options.manager.Option(*args, **kwargs)

Bases: UserDict
A parameter for end applications to consume. Find the value of it in the desired location.

For example: {

LEIT3 99, <

“keyword”: “q”, “location”: (“query”, “form”, “json”), “default”: “__all__”, “type”:

str”’

6.7. biothings.web 133

https://www.tornadoweb.org/en/stable/web.html
https://www.tornadoweb.org/en/stable/web.html#input

BioThings SDK

}
parse(reqgargs)
exception biothings.web.options.manager.OptionError (reason=None, **kwargs)
Bases: ValueError
simplify ()
class biothings.web.options.manager.OptionSet(*args, **kwargs)
Bases: UserDict
A collection of options that a specific endpoint consumes. Divided into groups and by the request methods.
For example: {

o firaw” .. },size”:{. ..}, dotfield”:{... }}, “GET”:{“q”:{... },’from™:{... },’sort”:{... }},
“POST”:{“q”:{...}, scopes”:{... }}

}

parse (method, reqargs)

Parse a HTTP request, represented by its method and args, with this OptionSet and return an attribute
dictionary.

setup(
Apply the wildcard method configurations dict. Must call this method after changes to this object.

class biothings.web.options.manager.OptionsManager (dict=None, /, **kwargs)
Bases: UserDict

A collection of OptionSet(s) that makes up an application. Provide an interface to setup and serialize.
Example: {

“annotation”: {“*”: {...}, “GET”: {...}, “POST”: {... }}, “query”: {**”: {...}, “GET”: {...},
“POST”: {... }}, “metadata”: {“GET”: {...}, “POST”: {... }}

}

add (name, optionset, groups=())

logQ)

class biothings.web.options.manager.PathArgCvter (**kwargs)
Bases: Converter

Dedicated argument converter for path arguments. Correspond to arguments received in tornado for
RequestHandler.path_args RequestHandler.path_kwargs
See https://www.tornadoweb.org/en/stable/web.html

class biothings.web.options.manager.QueryArgCvter (**kwargs)
Bases: Converter

Dedicated argument converter for url query arguments. Correspond to arguments received in tornado from
RequestHandler.get_query_argument
See https://www.tornadoweb.org/en/stable/web.html

classmethod str_to_bool (val)

Biothings-style str to bool interpretation

134 Chapter 6. Quick Start

https://www.tornadoweb.org/en/stable/web.html
https://www.tornadoweb.org/en/stable/web.html

BioThings SDK

class biothings.web.options.manager.ReqArgs (path=None, query=None, form=None, json_=None)

Bases: object

class Path(args=None, kwargs=None)
Bases: object

lookup (locator, order=None, src=False)

class biothings.web.options.manager.ReqResult

Bases: dotdict

class biothings.web.options.manager.Validator (defdict)

Bases: object

Describes the requirement of the existance of an

“enum”: <container>, “max”: <int>, “min’

}
validate (obj)

biothings.web.options.openapi

argument. {

’: <int>, “date_format™: <str>,

class biothings.web.options.openapi.OpenAPIContactContext (parent)

Bases: _ChildContext

ATTRIBUTE_FIELDS = {'email': 'email'

EXTENSION = True

email (v)
Set email field

name (v)

Set name field

subclasses:
<class 'biothings.web.options.openapi
<class 'biothings.web.options.openapi
'OpenAPIExternalDocsContext': <class

, 'name': 'name', 'url': 'url'}

MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':

.OpenAPIContactContext'>, 'OpenAPIContext':
.OpenAPIContext'>,

'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':

<class 'biothings.web.options.openapi
<class 'biothings.web.options.openapi
<class 'biothings.web.options.openapi
<class 'biothings.web.options.openapi

.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
.OpenAPILicenseContext'>, 'OpenAPIOperation':
.OpenAPIOperation'>, 'OpenAPIParameterContext':
.OpenAPIParameterContext'>,

'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class
'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class
'biothings.web.options.openapi._HasTags'>}

6.7. biothings.web

135

BioThings SDK

url(v)
Set url field

class biothings.web.options.openapi.OpenAPIContext

Bases: _HasExternalDocs

CHILD_CONTEXTS = {'info': ('OpenAPIInfoContext', 'info')}
EXTENSION = True

info (**kwargs)
Set info Create OpenAPIInfoContext and set info

path(path: str, summary: str | None = None, description: str | None = None)
server (url: str, description: str | None = None)

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class
'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class
'biothings.web.options.openapi._HasTags'>}

biothings.web.options.openapi.OpenAPIDocumentBuilder

alias of OpenAPIContext

class biothings.web.options.openapi.OpenAPIExternalDocsContext (parent)

Bases: _ChildContext, _HasDescription

ATTRIBUTE_FIELDS = {'url': ‘'url'}

EXTENSION = True

136

Chapter 6. Quick Start

BioThings SDK

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class

'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

url(v)
Set url field

class biothings.web.options.openapi.OpenAPIInfoContext (parent)

Bases: _ChildContext, _HasDescription

ATTRIBUTE_FIELDS = {'terms_of_service': 'termsOfService', 'title': 'title',
'version': 'version'}

CHILD_CONTEXTS = {'contact': ('OpenAPIContactContext', 'contact'), 'license':
('OpenAPILicenseContext', 'license')}

EXTENSION = True

contact (**kwargs)
Set contact Create OpenAPIContactContext and set contact

license (**kwargs)
Set license Create OpenAPILicenseContext and set license

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class

'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class
'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

6.7. biothings.web 137

BioThings SDK

terms_of_service(v)

Set termsOfService field
title(v)

Set title field
version(v)

Set version field

class biothings.web.options.openapi.OpenAPILicenseContext (parent)

Bases: _ChildContext
ATTRIBUTE_FIELDS = {'name': 'name', 'url': ‘'url'}

EXTENSION = True

name (v)

Set name field

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class

'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

url(v)
Set url field
class biothings.web.options.openapi.OpenAPIOperation(parent)
Bases: _ChildContext, _HasSummary, _HasExternalDocs, _HasTags, _HasDescription,
_HasParameters

ATTRIBUTE_FIELDS = {'operation_id': 'operationId'}
EXTENSION = True

operation_id(v)
Set operationld field

138

Chapter 6. Quick Start

BioThings SDK

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class

'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

class biothings.web.options.openapi.OpenAPIParameterContext (parent, name: str,in_: str, required.:
bool)

Bases: _ChildContext, _HasDescription

ATTRIBUTE_FIELDS = {'allow_empty': 'allowEmptyValue', 'allow_reserved':
'allowReserved', 'deprecated': 'deprecated', 'explode': ‘'explode', 'schema':
'schema', 'style': 'style'}

EXTENSION = True
allow_empty(v)
Set allowEmpty Value field

allow_reserved(v)
Set allowReserved field

deprecated(v)

Set deprecated field
explode (v)

Set explode field
schema (v)

Set schema field
style(v)

Set style field

6.7. biothings.web 139

BioThings SDK

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class

'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

type(typ: str, **kwargs)

class biothings.web.options.openapi.OpenAPIPathItemContext (parent)

Bases: _ChildContext, _HasSummary, HasDescription, HasParameters

CHILD_CONTEXTS = {'delete': ('OpenAPIOperation', 'delete'), 'get':
('OpenAPIOperation', 'get'), 'head': ('OpenAPIOperation', 'head'), 'options':
('OpenAPIOperation’', 'options'), 'patch': ('OpenAPIOperation', 'patch'), 'post':
('OpenAPIOperation', 'post'), 'put': ('OpenAPIOperation', 'put'), 'trace':
('OpenAPIOperation', 'trace')}

EXTENSION = True
delete (**kwargs)

Set delete Create OpenAPIOperation and set delete
get (**kwargs)

Set get Create OpenAPIOperation and set get
head (**kwargs)

Set head Create OpenAPIOperation and set head
http_method = 'trace'
options (**kwargs)

Set options Create OpenAPIOperation and set options
patch(**kwargs)

Set patch Create OpenAPIOperation and set patch
post (**kwargs)

Set post Create OpenAPIOperation and set post

put (**kwargs)
Set put Create OpenAPIOperation and set put

140

Chapter 6. Quick Start

BioThings SDK

subclasses: MutableMapping[str, Type[_ChildContext]] = {'OpenAPIContactContext':
<class 'biothings.web.options.openapi.OpenAPIContactContext'>, 'OpenAPIContext':
<class 'biothings.web.options.openapi.OpenAPIContext'>,
'OpenAPIExternalDocsContext': <class
'biothings.web.options.openapi.OpenAPIExternalDocsContext'>, 'OpenAPIInfoContext':
<class 'biothings.web.options.openapi.OpenAPIInfoContext'>, 'OpenAPILicenseContext':
<class 'biothings.web.options.openapi.OpenAPILicenseContext'>, 'OpenAPIOperation':
<class 'biothings.web.options.openapi.OpenAPIOperation'>, 'OpenAPIParameterContext':
<class 'biothings.web.options.openapi.OpenAPIParameterContext'>,
'OpenAPIPathItemContext': <class
'biothings.web.options.openapi.OpenAPIPathItemContext'>, '_BaseContext': <class
'biothings.web.options.openapi._BaseContext'>, '_ChildContext': <class
'biothings.web.options.openapi._ChildContext'>, '_HasDescription': <class
'biothings.web.options.openapi._HasDescription'>, '_HasExternalDocs': <class

'biothings.web.options.openapi._HasExternalDocs'>, '_HasParameters': <class
'biothings.web.options.openapi._HasParameters'>, '_HasSummary': <class
'biothings.web.options.openapi._HasSummary'>, '_HasTags': <class

'biothings.web.options.openapi._HasTags'>}

trace(**kwargs)
Set trace Create OpenAPIOperation and set trace

biothings.web.query

biothings.web.query.builder

Biothings Query Builder
Turn the biothings query language to that of the database. The interface contains a query term (q) and query options.

Depending on the underlying database choice, the data type of the query term and query options vary. At a minimum,
a query builder should support:

q: str, a query term,
when not provided, always perform a match all query. when provided as an empty string, always match none.
options: dotdict, optional query options.

scopes: list[str], the fields to look for the query term.
the meaning of scopes being an empty list or a None object/not provided is controlled by specific
class implementations or not defined.

source: list[str], fields to return in the result. size: int, maximum number of hits to return. from: int,
starting index of result to return. sort: str, customized sort keys for result list

aggs: str, customized aggregation string. post_filter: str, when provided, the search hits are filtered after
the aggregations are calculated. facet_size: int, maximum number of agg results.

class biothings.web.query.builder.ESQueryBuilder (user_guery=None, scopes_regexs=(),
scopes_default=("_id',), allow_random_query=True,
allow_nested_query=False, metadata=None)

Bases: object

Build an Elasticsearch query with elasticsearch-dsl.

6.7. biothings.web 141

BioThings SDK

apply_extras (search, options)

Process non-query options and customize their behaviors. Customized aggregation syntax string is trans-
lated here.

build(g=None, **options)
Build a query according to q and options. This is the public method called by API handlers.

Regarding scopes:
scopes: [str] nonempty, match query. scopes: NoneType, or [], no scope, so query string query.

Additionally support these options:
explain: include es scoring information userquery: customized function to interpret q
* additional keywords are passed through as es keywords
for example: ‘explain’, ‘version’ ...
¢ multi-search is supported when q is a list. all queries

are built individually and then sent in one request.

default_match_query (g, scopes, options)
Override this to customize default match query. By default it implements a multi_match query.

default_string_query(q, options)
Override this to customize default string query. By default it implements a query string query.

class biothings.web.query.builder.ESScrollID(seq: object)

Bases: UserString

class biothings.web.query.builder.ESUserQuery (path)

Bases: object
get_filter (named_query)
get_query (named_query, **kwargs)
has_filter (named_query)
has_query (named_query)
property logger
class biothings.web.query.builder.Group (term, scopes)
Bases: tuple

Create new instance of Group(term, scopes)

scopes
Alias for field number 1

term
Alias for field number O

class biothings.web.query.builder.MongoQueryBuilder (default_scopes=('_id'))

Bases: object

build(q, **options)

142 Chapter 6. Quick Start

BioThings SDK

class biothings.web.query.builder.QStringParser (default_scopes=('_id',),
patterns=(('(?P<scope>\\Ww+):(?P<term>[":]+)’,
()),), gpnames=("term’, 'scope’))

Bases: object
parse(q)
class biothings.web.query.builder.Query (term, scopes)
Bases: tuple
Create new instance of Query(term, scopes)

scopes
Alias for field number 1

term
Alias for field number O

exception biothings.web.query.builder.RawQueryInterrupt (data)
Bases: Exception

class biothings.web.query.builder.SQLQueryBuilder (tables, default_scopes=('id',), default_limit=10)
Bases: object

build(q, **options)

biothings.web.query.engine

Search Execution Engine

Take the output of the query builder and feed to the corresponding database engine. This stage typically resolves the
db destination from a biothing_type and applies presentation and/or networking parameters.

Example:

>>> from biothings.web.query import ESQueryBackend
>>> from elasticsearch import Elasticsearch
>>> from elasticsearch_dsl import Search

>>> backend = ESQueryBackend(Elasticsearch())
>>> backend.execute(Search() .query("match", _id="1017"))

>>> _["hits"]["hits"][0]["_source"].keys()
dict_keys(['taxid', 'symbol', 'name', ... 1)

class biothings.web.query.engine.AsyncESQueryBackend (client, indices=None, scroll_time='Im',
scroll_size=1000, multisearch_concurrency=>5,
total_hits_as_int=True)

Bases: ESQueryBackend
Execute an Elasticsearch query

async execute(query, **options)

Execute the corresponding query. Must return an awaitable. May override to add more. Handle uncaught
exceptions.

6.7. biothings.web 143

BioThings SDK

Options:
fetch_all: also return a scroll_id for this query (default: false) biothing_type: which type’s correspond-
ing indices to query (default in config.py)

class biothings.web.query.engine.ESQueryBackend(client, indices=None)
Bases: object

adjust_index (original_index, query, **options)
Override to get specific ES index.

execute (query, **options)
exception biothings.web.query.engine.EndScrollInterrupt
Bases: ResultInterrupt

class biothings.web.query.engine.MongoQueryBackend (client, collections)
Bases: object

execute (query, **options)

exception biothings.web.query.engine.RawResultInterrupt (data)
Bases: ResultInterrupt

exception biothings.web.query.engine.ResultInterrupt (data)
Bases: Exception

class biothings.web.query.engine.SQLQueryBackend(client)
Bases: object

execute (query, **options)

biothings.web.query.formatter

Search Result Formatter

Transform the raw query result into consumption-friendly structures by possibly removing from, adding to, and/or
flattening the raw response from the database engine for one or more individual queries.
class biothings.web.query.formatter.Doc(dict=None,/, **kwargs)

Bases: FormatterDict

{

“id”’ ..., “_score”: ... , ...

}

class biothings.web.query. formatter.ESResultFormatter (licenses=None, license_transform=None,
field_notes=None, excluded_keys=())

Bases: ResultFormatter

Class to transform the results of the Elasticsearch query generated prior in the pipeline. This contains the func-
tions to extract the final document from the elasticsearch query result in “Elasticsearch Query _. This also
contains the code to flatten a document etc.

transform(response, **options)

Transform the query response to a user-friendly structure. Mainly deconstruct the elasticsearch response
structure and hand over to transform_doc to apply the options below.

144 Chapter 6. Quick Start

BioThings SDK

Options:
generic transformations for dictionaries # dotfield: flatten a dic-
tionary using dotfield notation _sorted: sort keys alaphabetically in ascending order always_list: ensure
the fields specified are lists or wrapped in a list allow_null: ensure the fields specified are present in
the result,

the fields may be provided as type None or [].

additional multisearch result transformations # template:
base dict for every result, for example: {“success”: true} templates: a different base for every result,
replaces the setting above template_hit: a dict to update every positive hit result, default: {“found”:
true} template_miss: a dict to update every query with no hit, default: {“found”: false}

document format and content management # biothing_type: result
document type to apply customized transformation.

for example, add license field basing on document type’s metadata.

one: return the individual document if there’s only one hit. ignore this setting
if there are multiple hits. return None if there is no hit. this option is not effective when aggregation
results are also returned in the same query.

native: bool, if the returned result is in python primitive types. version: bool, if _version field is kept.
score: bool, if _score field is kept. with_total: bool, if True, the response will include max_total
documents,

and a message to tell how many query terms return greater than the max_size of hits. The
default is False. An example when with_total is True: {

‘max_total’: 100, ‘msg’: ‘12 query terms return > 1000 hits, using from=1000 to retrieve
the remaining hits’, ‘hits’: [...]

}

transform_aggs (res)

Transform the aggregations field and make it more presentable. For example, these are the fields of a two
level nested aggregations:

aggregations.<term>.doc_count_error_upper_bound aggregations.<term>.sum_other_doc_count
aggregations.<term>.buckets.key aggregations.<term>.buckets.key_as_string aggrega-
tions.<term>.buckets.doc_count aggregations.<term>.buckets.<nested_term>.* (recursive)

After the transformation, we’ll have:

facets.<term>._type facets.<term>.total facets.<term>.missing facets.<term>.other
facets.<term>.terms.count facets.<term>.terms.term facets.<term>.terms.<nested_term>.*
(recursive)

Note the first level key change doesn’t happen here.
transform_hit (path, doc, options)
Transform an individual search hit result. By default add licenses for the configured fields.

If a source has a license url in its metadata, Add “_license” key to the corresponding fields. Support dot
field representation field alias.

If we have the following settings in web_config.py

LICENSE_TRANSFORM = {

CLINNT3 99, <

“exac_nontcga”: “exac”, “snpeff.ann”: “snpeff”

6.7.

biothings.web 145

BioThings SDK

}?
Then GET /v1/variant/chr6:2.38906659G> A should look like: {

“exac”: {
“_license”: “http://bit.ly/2H9c4hg”, “af”’: 0.00002471},

“exac_nontcga’: {
“_license”: “http://bit.ly/2H9c4hg”, <— “af’: 0.00001883}, ...

} And GET /v1/variant/chr14:2.35731936G>C could look like: {

“snpeff’: {

“_license”: “http://bit.ly/2suyRKt”, “ann”: [{*_license”: “http://bit.ly/2suyRKt”, <—
“effect”: “intron_variant”, “feature_id”: “NM_014672.3”, ...}, {*“_license”: “http://bit.
ly/2suyRKt”, <— “effect”: “intron_variant”, “feature_id”: “NM_001256678.1", ...},

.1

}

The arrow marked fields would not exist without the setting lines.

transform_mapping (mapping, prefix=None, search=None)

Transform Elasticsearch mapping definition to user-friendly field definitions metadata results.

trasform_jmespath(path: str, doc, options) — None
Transform any target field in doc using jmespath query syntax. The jmespath query parameter value should
have the pattern of “<target_list_fieldname>|<jmespath_query_expression>" <target_list_fieldname> can
be any sub-field of the input doc using dot notation, e.g. “aaa.bbb”.

If empty or “.”, it will be the root field.

The flexible jmespath syntax allows to filter/transform any nested objects in the input doc on the fly. The
output of the jmespath transformation will then be used to replace the original target field value. .. rubric::
Examples

* filtering an array sub-field
jmespath=tags|[’name=="Metadata] # filter tags array by name field jmes-
path=aaa.bbb|[?(sub_a=="val_a’|[sub_a=="val_aa)%26%26sub_b=="val_b"] # use %26%?26 for
&&

static traverse(obj, leaf node=False)
Output path-dictionary pairs. For example, input: {

‘exac_nontcga’: {‘af’: 0.00001883}, ‘gnomad_exome’: {‘af’: {‘af’: 0.0000119429, ‘af_afr’:
0.000123077}}, ‘snpeff’: {‘ann’: [{‘effect’: ‘intron_variant’,

‘feature_id’: ‘NM_014672.3’}, {‘effect’: ‘intron_variant’, ‘feature_id’:
‘NM_001256678.1°}1}

} will be translated to a generator: (

(“exac_nontcga”, {“af”’: 0.00001883}), (“gnomad_exome.af”, {“af”’: 0.0000119429, “af afr”:
0.000123077}), (“gnomad_exome”, {“af”: {“af’: 0.0000119429, “af_afr”: 0.000123077}}),
(“snpeff.ann”, {“effect”: “intron_variant”, “feature_id”: “NM_014672.3"}), (“snpeff.ann”, {“ef-
fect”: “intron_variant”, “feature_id”: “NM_001256678.1"}), (“snpeff.ann”, [{ ... }.{ ... }]),
(“snpeft”, {“ann™: [{ ... },{ ... }1}), (, {‘exac_nontcga’: {...}, ‘gnomad_exome’: {...},
‘snpeff’: {...}})

) or when traversing leaf nodes: (

146 Chapter 6. Quick Start

http://bit.ly/2H9c4hg
http://bit.ly/2H9c4hg
http://bit.ly/2suyRKt
http://bit.ly/2suyRKt
http://bit.ly/2suyRKt
http://bit.ly/2suyRKt

BioThings SDK

(‘exac_nontcga.af’, 0.00001883), (‘gnomad_exome.af.af”, 0.0000119429), (‘gno-

mad_exome.af.af afr’, 0.000123077), (‘snpeff.ann.effect’,
(‘snpeff.ann.feature_id’, ‘NM_014672.3"), (‘snpeff.ann.effect’,
(‘snpeff.ann.feature_id’, ‘NM_001256678.1")

)

class biothings.web.query. formatter.FormatterDict (dict=None, /, **kwargs)
Bases: UserDict

collapse(key)
exclude (keys)
include (keys)
wrap (key, kls)

class biothings.web.query. formatter.Hits(dict=None, /, **kwargs)
Bases: FormatterDict

{

“total”: ... , “hits”: [
(... L{... },...

}

class biothings.web.query. formatter.MongoResultFormatter

Bases: ResultFormatter
transform(result, **options)

class biothings.web.query. formatter.ResultFormatter
Bases: object

transform(response)
transform_mapping (mapping, prefix=None, search=None)

exception biothings.web.query.formatter.ResultFormatterException
Bases: Exception

class biothings.web.query.formatter.SQLResultFormatter
Bases: ResultFormatter

transform(result, **options)

biothings.web.query.pipeline

‘intron_variant’),
‘intron_variant’),

class biothings.web.query.pipeline.AsyncESQueryPipeline (builder, backend, formatter, **settings)

Bases: QueryPipeline

async fetch(**kwargs)

async search(**kwargs)

6.7. biothings.web

147

BioThings SDK

class biothings.web.query.pipeline.ESQueryPipeline (builder=None, backend=None, formatter=None,
*args, **kwargs)

Bases: QueryPipeline
fetch(id, **options)
search(q, **options)
class biothings.web.query.pipeline.MongoQueryPipeline (builder, backend, formatter, **settings)
Bases: QueryPipeline

class biothings.web.query.pipeline.QueryPipeline (builder, backend, formatter, **settings)
Bases: object

fetch(id, **options)
search(q, **options)

exception biothings.web.query.pipeline.QueryPipelineException(code: int = 500, summary: str =",
details: object = None)

Bases: Exception

code: int = 500

details: object = None

summary: str ="'

exception biothings.web.query.pipeline.QueryPipelineInterrupt (data)
Bases: QueryPipelineException

class biothings.web.query.pipeline.SQLQueryPipeline (builder, backend, formatter, **settings)
Bases: QueryPipeline

biothings.web.query.pipeline.capturesESExceptions (func)

biothings.web.settings

biothings.web.settings.configs

class biothings.web.settings.configs.ConfigModule (config=None, parent=None, validators=(),
**kwargs)

Bases: object

A wrapper for the settings that configure the web API.
* Environment variables can override settings of the same names.
* Default values are defined in biothings.web.settings.default.

class biothings.web.settings.configs.ConfigPackage (root, modules)
Bases: NamedTuple

Create new instance of ConfigPackage(root, modules)

modules: Collection
Alias for field number 1

148 Chapter 6. Quick Start

BioThings SDK

root: object
Alias for field number 0

biothings.web.settings.configs.load(config="config")
biothings.web.settings.configs.load_module (config, default=None)
Load a config module.
config:
1. a module object
2. a fully qualified module name

3. afile path to a module

biothings.web.settings.default

Biothings Web Settings Default

biothings.web.settings.validators

class biothings.web.settings.validators.DBParamValidator
Bases: object

validate (config)

class biothings.web.settings.validators.MongoParamValidaor
Bases: object
validate(config)

class biothings.web.settings.validators.SubmoduleValidator
Bases: object
validate(config)

class biothings.web.settings.validators.WebAPIValidator
Bases: object

validate(config)

biothings.web.templates

The “templates” folder stores HTML templates for native biothings web handlers and is structured as a dummy module
to facilitate location resolution. Typically, biothings.web.templates.__path__[0] returns a string representing
the location of this folder on the file system. This folder is intended to be used internally by the SDK developer.

6.7. biothings.web 149

BioThings SDK

6.8 biothings.tests

6.8.1 biothings.tests.hub

class biothings.tests.hub.DatabaseCollectionTesting(db_url, db, collection)
Bases: object

Constructor that takes in three items db_url - string - the mongoDB url to connect to db - string - name of DB to
use collection - string - name of collection in db

test_database_index()
test_document_name ()
test_documents_taxid (raxid)
test_field_does_not_exist(_id)
test_field_taxid(zaxid)
test_field_unique_id(_id)

test_total_document_count (expected_count)

6.8.2 biothings.tests.web

Biothings Test Helpers
There are two types of test classes that provide utilities to three types of test cases, developed in the standalone apps.

The two types of test classes are:
BiothingsWebTest, which targets a running web server. BiothingsWebAppTest, which targets a web server config
file.

To further illustrate, for any biothings web applications, it typically conforms to the following architectures:

Layer 3: A web server that implements the behaviors defined below. Layer 2: A config file that defines how to serve
data from ES. Layer 1: An Elasticsearch server with data.

And for the two types of test classes, to explain their differences in the context of the layered design described above:

BiothingsWebTest targets an existing Layer 3 endpoint. BiothingsWebAppTest targets layer 2 and runs its
own layer 3. Note no utility is provided to directly talk to layer 1.

The above discussed the python structures provided as programming utilities, on the other hand, there are three types
of use cases, or testing objectives:

L3 Data test, which is aimed to test the data integrity of an APIL.
It subclasses BiothingsWebTest and ensures all layers working. The data has to reside in elasticsearch
already.

L3 Feature test, which is aimed to test the API implementation.
It makes sure the settings in config file is reflected. These tests work on production data and re-
quire constant updates to keep the test cases in sync with the actual data. These test cases subclass
BiothingsWebTest as well and asl require existing production data in elasticsearch.

L2 Feature test, doing basically the same things as above but uses
a small set of data that it ingests into elasticsearch. This is a lightweight test for development and
automated testings for each new commit. It comes with data it will ingest in ES and does not require
any existing data setup to run.

150 Chapter 6. Quick Start

BioThings SDK

To illustrate the dlfferences in a chart: + + + +
+ + | Objectives | Class | Test Target | ES Has Data | Automated Testing Trigger |
+ + + + + + | L3 Data Test | Bioth-
ingsWebTest | A Running API | Yes | Data Release | + + + +
+ + | L3 Feature T.| BiothingsWebTest | A Running API | Yes | Data Release & New Commit
| + + + + + + | L2 Feature T.| BiothingsWe-
bAppTest | A config module | No* | New Commit | + + + +

+ + * For L2 Feature Test, data is defined in the test cases and will be automatically ingested
into

Elasticsearch at the start of the testing and get deleted after testing finishes. The other two types of testing
require existing production data on the corresponding ES servers.

In development, it is certainly possible for a particular test case to fall under multiple test types, then the developer can
use proper inheritance structures to avoid repeating the specific test case.

In terms of naming conventions, sometimes the L3 tests are grouped together and called remote tests, as they mostly
target remote servers. And the L2 tests are called local tests, as they starts a local server.

L3 Envs:

TEST_SCHEME TEST_PREFIX TEST_HOST TEST_CONF
L2 Envs:

TEST_KEEPDATA < Config Module Override >

biothings.tests.web.BiothingsDataTest
alias of BiothingslWebTest

biothings.tests.web.BiothingsTestCase
alias of BiothingsWebAppTest

class biothings.tests.web.BiothingsWebAppTest (methodName: str = 'runTest")
Bases: BiothingsliebTestBase, AsyncHTTPTestCase
Starts the tornado application to run tests locally. Need a config.py under the test class folder.

TEST_DATA_DIR_NAME: str | None = None
property config

get_app()
Should be overridden by subclasses to return a fornado.web.Application or other .HTTPServer callback.
get_new_ioloop()
Returns the .IOLoop to use for this test.
By default, a new .IOLoop is created for each test. Subclasses may override this method to return
AOLoop.current() if it is not appropriate to use a new .IOLoop in each tests (for example, if there are

global singletons using the default ./OLoop) or if a per-test event loop is being provided by another system
(such as pytest-asyncio).

Deprecated since version 6.3: This method will be removed in Tornado 7.0.

get_url (path)

Try best effort to get a full url to make a request. Return an absolute url when class var ‘host’ is defined. If
not, return a path relative to the host root.

6.8. biothings.tests 151

BioThings SDK

request (path, method='GET', expect=200, **kwargs)

Use requests library to make an HTTP request. Ensure path is translated to an absolute path. Conveniently
check if status code is as expected.

class biothings.tests.web.BiothingsWebTest
Bases: BiothingsiWebTestBase

classmethod setup_class()

this is the setup method when pytest run tests from this class

class biothings.tests.web.BiothingsWebTestBase
Bases: object

get_url (path)

Try best effort to get a full url to make a request. Return an absolute url when class var ‘host’ is defined. If
not, return a path relative to the host root.

host = "'

static msgpack_ok(packed_bytes)
Load msgpack into a dict

prefix = 'vl'

query (method='GET', endpoint="query’', hits=True, data=None, json=None, **kwargs)
Make a query and assert positive hits by default. Assert zero hit when hits is set to False.

request (path, method='GET', expect=200, **kwargs)

Use requests library to make an HTTP request. Ensure path is translated to an absolute path. Conveniently
check if status code is as expected.

scheme = 'http'

tearDown()

By default, a new “IOLoop” is constructed for each test and is available as “self.io_loop”. To maintain
the desired test behavior, it is necessary to clear the current IOLoop at the end of each test function. See
class AsyncTestCase in the reference: Reference: https://www.tornadoweb.org/en/branch6.4/_modules/
tornado/testing.html

static value_in_result (value, result: dict | list, key: str, case_insensitive: bool = False) — bool

Check if value is in result at specific key

Elasticsearch does not care if a field has one or more values (arrays), so you may get a search with multiple
values in one field. You were expecting a result of type T but now you have a List[T] which is bad. In
testing, usually any one element in the list eq. to the value you’re looking for, you don’t really care which.
This helper function checks if the value is at a key, regardless of the details of nesting, so you can just do
this:

assert self.value_in_result(value, result, ‘where.it.should.be’)
Caveats: case_insensitive only calls .lower() and does not care about locale/ unicode/anything
Parameters
* value - value to look for
e result — dict or list of input, most likely from the APIs
¢ key — dot delimited key notation

e case_insensitive — for str comparisons, invoke .lower() first

152 Chapter 6. Quick Start

https://www.tornadoweb.org/en/branch6.4/_modules/tornado/testing.html
https://www.tornadoweb.org/en/branch6.4/_modules/tornado/testing.html

BioThings SDK

Returns
boolean indicating whether the value is found at the key

Raises
TypeError — when case_insensitive set to true on unsupported types

6.9 biothings.utils

6.9.1 biothings.utils.aws

biothings.utils.aws.create_bucket (name, region=None, aws_key=None, aws_secret=None, acl=None,
ignore_already_exists=False)

Create a S3 bucket “name” in optional “region”. If aws_key and aws_secret are set, S3 client will these, otherwise
it’'ll use default system-wide setting. “acl” defines permissions on the bucket: “private” (default), “public-read”,
“public-read-write” and ‘“authenticated-read”

biothings.utils.aws.download_s3_file(s3key, localfile=None, aws_key=None, aws_secret=None,
s3_bucket=None, overwrite=Fualse)

biothings.utils.aws.get_s3_file(s3key, localfile=None, return_what=False, aws_key=None,
aws_secret=None, s3_bucket=None)

biothings.utils.aws.get_s3_file_contents(s3key, aws_key=None, aws_secret=None, s3_bucket=None) —
bytes

biothings.utils.aws.get_s3_folder(s3folder, basedir=None, aws_key=None, aws_secret=None,
s3_bucket=None)

biothings.utils.aws.get_s3_static_website_url (s3key, aws_key=None, aws_secret=None,
s3_bucket=None)

biothings.utils.aws.get_s3_url(s3key, aws_key=None, aws_secret=None, s3_bucket=None)
biothings.utils.aws.key_exists(bucket, s3key, aws_key=None, aws_secret=None)
biothings.utils.aws.send_s3_big_file(localfile, s3key, overwrite=False, acl=None, aws_key=None,

aws_secret=None, s3_bucket=None, storage_class=None)

Multiparts upload for file bigger than 5GiB

biothings.utils.aws.send_s3_file(localfile, s3key, overwrite=False, permissions=None, metadata=None,
content=None, content_type=None, aws_key=None, aws_secret=None,
s3_bucket=None, redirect=None)

save a localfile to s3 bucket with the given key. bucket is set via S3_BUCKET it also save localfile’s lastmodified
time in s3 file’s metadata

Parameters
redirect (str) — if not None, set the redirect property of the object so it produces a 301 when
accessed

biothings.utils.aws.send_s3_folder (folder, s3basedir=None, acl=None, overwrite=False, aws_key=None,
aws_secret=None, s3_bucket=None)

biothings.utils.aws.set_static_website(name, aws_key=None, aws_secret=None, index='"index.html’,
error='error.html")

6.9. biothings.utils 153

BioThings SDK

6.9.2 biothings.utils.backend

Backend access class.

class biothings.utils.backend.DocBackendBase

Bases: object
drop (O

finalize()

if needed, for example for bulk updates, perform flush at the end of updating. Final optimization or com-
pacting can be done here as well.

get_from_id(id)
get_id_list(Q)
insert (doc_Ii)

name = 'Undefined'

prepare()

if needed, add extra preparation steps here.
property target_name
update(id, extra_doc)

update only, no upsert.

property version

class biothings.utils.backend.DocBackendOptions(cls, es_index=None, es_host=None,

es_doc_type=None, mongo_target_db=None,
mongo_target_collection=None)

Bases: object

class biothings.utils.backend.DocESBackend (esidxer=None)

Bases: DocBackendBase
esidxer is an instance of utils.es.ESIndexer class.
count()
classmethod create_from_options (options)
Function that recreates itself from a DocBackendOptions class. Probably a needless rewrite of __init__...
drop ()

finalize()

if needed, for example for bulk updates, perform flush at the end of updating. Final optimization or com-
pacting can be done here as well.

get_from_id(id)
get_id_list (step=None)

insert (doc_li)

154

Chapter 6. Quick Start

BioThings SDK

mget_f£from_ids (ids, step=100000, only_source=True, asiter=True, **kwargs)
ids is an id list. always return a generator

name = 'es

prepare (update_mapping=True)
if needed, add extra preparation steps here.

query (query=None, verbose=False, step=10000, scroll="10m’', only_source=True, **kwargs)
Function that takes a query and returns an iterator to query results.

remove_from_ids (ids, step=10000)
property target_alias
property target_esidxer
property target_name

update (id, extra_doc)
update only, no upsert.

property version

class biothings.utils.backend.DocMemoryBackend (target_name=None)

Bases: DocBackendBase
target_dict is None or a dict.

drop(

finalize()
dump target_dict into a file.

get_from_id(id)
get_id_list(Q)

insert (doc_li)

name = 'memory'
property target_name

update (id, extra_doc)

update only, no upsert.

class biothings.utils.backend.DocMongoBackend (target db, target_collection=None)

Bases: DocBackendBase
target_collection is a pymongo collection object.
count ()

count_from_ids (ids, step=100000)

return the count of docs matching with input ids normally, it does not need to query in batches, but Mon-
goDB has a BSON size limit of 16M bytes, so too many ids will raise a pymongo.errors.DocumentTooLarge
error.

drop (O

6.9. biothings.utils 155

BioThings SDK

finalize()

flush all pending writes.

get_from_id(id)
get_id_list(Q)
insert (docs)

mget_f£from_ids (ids, asiter=False)
ids is an id list. returned doc list should be in the same order of the

input ids. non-existing ids are ignored.

name = 'mongo'
remove_from_ids (ids, step=10000)
property target_db

property target_name

update (docs, upsert=False)
if id does not exist in the target_collection, the update will be ignored except if upsert is True
update_diff (diff, extra=None)

update a doc based on the diff returned from diff.diff_doc “extra” can be passed (as a dictionary) to add
common fields to the updated doc, e.g. a timestamp.

property version

biothings.utils.backend.DocMongoDBBackend

alias of DocMongoBackend

6.9.3 biothings.utils.common

This module contains util functions may be shared by both BioThings data-hub and web components. In general, do
not include utils depending on any third-party modules.

class biothings.utils.common.BiothingsJSONEncoder (*, skipkeys=False, ensure_ascii=True,

check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
default=None)

Bases: JSONEncoder
A class to dump Python Datetime object. json.dumps(data, cls=DateTimeJSONEncoder, indent=indent)
Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an RecursionError). Otherwise, no such
check takes place.

156

Chapter 6. Quick Start

BioThings SDK

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of O will only insert newlines. None is the most compact representation.

v 6 6,

If specified, separators should be an (item_separator, key_separator) tuple. The default is (, ¢, ‘1) if indent

is None and (“,, *:) otherwise. To get the most compact JSON representation, you should specify (,’, “:”) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

default (o)

Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:
iterable = iter(o)
except TypeError:
pass
else:
return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

class biothings.utils.common.DummyConfig(name, doc=None)
Bases: module

This class allows “import config” or “from biothings import config” to work without actually creating a config.py
file:

import sys from biothings.utils.common import DummyConfig sys.modules[“config”] = Dummy-
Config(‘config’) sys.modules[*“biothings.config”’] = DummyConfig(‘config’)

class biothings.utils.common.LogPrint (log_f, log=1, timestamp=0)
Bases: object

If this class is set to sys.stdout, it will output both log_f and __stdout__. log_f is a file handler.

close()
fileno()
flush(O
pause()
resume()
start()

write(text)

6.9. biothings.utils 157

BioThings SDK

biothings.utils.common.SubStr (input_string, start_string="", end_string="", include=0)
Return the substring between start_string and end_string. If start_string is ’, cut string from the beginning of
input_string. If end_string is ’, cut string to the end of input_string. If either start_string or end_string can not
be found from input_string, return ’. The end_pos is the first position of end_string after start_string. If multi-
occurence,cut at the first position. include=0(default), does not include start/end_string; include=1: include
start/end_string.
biothings.utils.common.addsuffix (filename, suffix, noext=False)
Add suffix in front of “.extension”, so keeping the same extension. if noext is True, remove extension from the
filename.
async biothings.utils.common.aiogunzipall (folder, pattern, job_manager, pinfo)
Gunzip all files in folder matching pattern. job_manager is used for parallelisation, and pinfo is a pre-filled dict
used by job_manager to report jobs in the hub (see bt.utils.manager.JobManager)
biothings.utils.common.anyfile (infile, mode='r")
return a file handler with the support for gzip/zip comppressed files. if infile is a two value tuple, then first one
is the compressed file; the second one is the actual filename in the compressed file. e.g., (‘a.zip’, ‘aa.txt’)
biothings.utils.common.ask(prompt, options='YN")
Prompt Yes or No,return the upper case ‘Y’ or ‘N’.

class biothings.utils.common.dotdict
Bases: dict

biothings.utils.common.dump (0bj, filename, protocol=4, compress='gzip")
Saves a compressed object to disk protocol version 4 is the default for py3.8, supported since py3.4

biothings.utils.common.dump2gridfs (obyj, filename, db, protocol=2)
Save a compressed (support gzip only) object to MongoDB gridfs.

biothings.utils.common. file_newer (source, target)
return True if source file is newer than target file.

biothings.utils.common.filter_dict(d, keys)
Remove keys from dict “d”. “keys” is a list of string, dotfield notation can be used to express nested keys. If key
to remove doesn’t exist, silently ignore it

biothings.utils.common. find_classes_subclassing(mods, baseclass)
Given a module or a list of modules, inspect and find all classes which are a subclass of the given baseclass,
inside those modules

biothings.utils.common. find_doc(k, keys)

Used by jsonld insertion in www.api.es._insert_jsonld

biothings.utils.common. find_value_in_doc (dotfield, value, doc)

Explore mixed dictionary using dotfield notation and return value. Stringify before search Support wildcard
searching The comparison is case-sensitive Example:

X={"a”:{“b”: “17},)°x7:[{My”: “37, <27 “47}, %571} Y = [“a”, {“D7: “17}, {“x:[{“y”: <37, <27 <47}, “57]}]
Z = [“a”, {“b”: “17}, {"x”:[{*y”: “34567, “z”: “4”}, “5”]}] assert find_value_in_doc(“a.b”, “1”, X) assert
find_value_in_doc(“x.y”, “3”, X) assert find_value_in_doc(“x.y”, “3*7”, Z) assert find_value_in_doc(“x.y”,
“345677, Z) assert find_value_in_doc(“x”, “5”, Y) assert find_value_in_doc(“a.b”, “c”, X) is False assert
find_value_in_doc(“a”, “c”, X) is False

biothings.utils.common.get_class_from_classpath(class_path)

158 Chapter 6. Quick Start

BioThings SDK

biothings.utils.common.get_compressed_outfile (filename, compress='gzip")
Get a output file handler with given compress method. currently support gzip/bz2/lzma, 1zma only available in
py3

biothings.utils.common.get_dotfield_value(dotfield, d)

Explore dictionary d using dotfield notation and return value. Example:

d ={"a":{"b":1}}.
get_dotfield_value("a.b",d) => 1

biothings.utils.common.get_loop()

Since Python 3.10, a Deprecation warning is emitted if there is no running event loop. In future Python releases,
a RuntimeError will be raised instead.

Ref: https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop

biothings.utils.common.get_loop_with_max_workers (max_workers=None)
biothings.utils.common.get_plugin name_from_local_manifest (path)
biothings.utils.common.get_plugin_name_from_remote_manifest (url)
biothings.utils.common.get_random_string()
biothings.utils.common.get_timestamp ()
biothings.utils.common.gunzip(f, pattern="*gz")
biothings.utils.common.gunzipall (folder, pattern="*gz")

gunzip all *. gz files in “folder”

class biothings.utils.common.inf
Bases: object

Represents Inf type, but not as a float

biothings.utils.common.is_filehandle (/1)
return True/False if th is a file-like object

biothings.utils.common.is_float(f)

return True if input is a float.

biothings.utils.common.is_int(s)

return True or False if input string is integer or not.
biothings.utils.common.is_scalar(f)
biothings.utils.common.is_seq(/i)

return True if input is either a list or a tuple.

biothings.utils.common.is_str(s)

return True or False if input is a string or not. python3 compatible.

biothings.utils.common.iter_n(iterable, n, with_cnt=False)

Iterate an iterator by chunks (of n) if with_cnt is True, return (chunk, cnt) each time ref http://stackoverflow.com/
questions/8991506/iterate-an-iterator-by-chunks-of-n-in-python

6.9. biothings.utils 159

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
http://stackoverflow.com/questions/8991506/iterate-an-iterator-by-chunks-of-n-in-python
http://stackoverflow.com/questions/8991506/iterate-an-iterator-by-chunks-of-n-in-python

BioThings SDK

biothings.utils.common.json_encode (obj)
Tornado-aimed json encoder, it does the same job as tornado.escape.json_encode but also deals with datetime
encoding

biothings.utils.common. json_serial (obj)
JSON serializer for objects not serializable by default json code

biothings.utils.common.list2dict (a_list, keyitem, alwayslist=False)

Return a dictionary with specified keyitem as key, others as values. keyitem can be an index or a sequence of
indexes. For example:

li = [['A","a",1],

['B' y 'a| !Z]l
['A",'b",3]1]
list2dict(li, ®)---> {'A":[('a',1),('b",3)],

'B'i('a’,2)}

If alwayslist is True, values are always a list even there is only one item in it.

list2dict(li, O, True)---> {'A':[('a",1),('b',3)],
'B':[('a',2),1}

biothings.utils.common.loadobj (filename, mode=/'file")
Loads a compressed object from disk file (or file-like handler) or MongoDB gridfs file (mode="gridfs’)

obj = loadobj('data.pyobj')
obj loadobj(('data.pyobj', mongo_db), mode='gridfs')

biothings.utils.common.md5sum(fname)

biothings.utils.common.merge(x, dx)

Merge dictionary dx (x) into dictionary x. If __ REPLACE___ key is present in any level z in dx, z in X is replaced,
instead of merged, with z in dx.

class biothings.utils.common.nan

Bases: object
Represents NaN type, but not as a float

biothings.utils.common.newer (10, t1, fint="%Y%m%d")

t0 and t1 are string of timestamps matching “format” pattern. Return True if t1 is newer than t0.

biothings.utils.common.open_anyfile (infile, mode="r")

a context manager can be used in “with” stmt. accepts a filehandle or anything accepted by anyfile function.

with open_anyfile(‘test.txt’) as in_f:
do_something()

biothings.utils.common.open_compressed_file (filename)
Get a read-only file-handler for compressed file, currently support gzip/bz2/lzma, lzma only available in py3

biothings.utils.common.parse_folder_name_from_url (url)

biothings.utils.common.rmdashfr (top)
Recursively delete dirs and files from “top” directory, then delete “top” dir

160 Chapter 6. Quick Start

BioThings SDK

biothings.utils.common.run_once()

should_run_task_1 = run_once() print(should_run_task_1()) -> True print(should_run_task_1()) -> False
print(should_run_task_1()) -> False print(should_run_task_1()) -> False

should_run_task_2 =run_once() print(should_run_task_2(‘2a’)) -> True print(should_run_task_2(‘2b’)) -> True
print(should_run_task_2(‘2a’)) -> False print(should_run_task_2(‘2b’)) -> False ...

biothings.utils.common.safe_unicode(s, mask="%#")

replace non-decodable char into “#”.

biothings.utils.common.safewfile (filename, prompt=True, default='C’', mode="w")

return a file handle in ‘w’ mode,use alternative name if same name exist. if prompt == 1, ask for overwrit-
ing,appending or changing name, else, changing to available name automatically.

biothings.utils.common.sanitize_tarfile(tar_object, directory)

Prevent user-assisted remote attackers to overwrite arbitrary files via a .. (dot dot) sequence in filenames in a
TAR archive, a related issue to CVE-2007-4559

biothings.utils.common.setup_logfile (logfile)
biothings.utils.common.sizeof_fmt (num, suffix='B")

biothings.utils.common.split_ids(q)

PP

split input query string into list of ids. any of

[,#"" as the separator,

but perserving a phrase if quoted (either single or double quoted) more detailed rules see: http:
//docs.python.org/2/library/shlex.html#parsing-rules

e.g.:

>>> split_ids('CDK2 CDK3')
['CDK2', 'CDK3']
>>> split_ids('"CDK2 CDK3"

CDk4)
[‘CDK2 CDK3’, ‘CDK4’]

class biothings.utils.common.splitstr
Bases: str
Type representing strings with space in it

biothings.utils.common.timesofar (10, clock=0, tI=None)

return the string(eg.’3m3.42s’) for the passed real time/CPU time so far from given tO (return from tO=time.time()
for real time/ tO=time.clock() for CPU time).

biothings.utils.common.traverse(obj, leaf node=False)

Output path-dictionary pairs. For example, input: {

‘exac_nontcga’: {‘af’: 0.00001883}, ‘gnomad_exome’: {‘af’: {‘af’: 0.0000119429, ‘af_afr’:
0.000123077}}, ‘snpeff’: {‘ann’: [{‘effect’: ‘intron_variant’,

‘feature_id’: ‘NM_014672.3’}, { ‘effect’: ‘intron_variant’, ‘feature_id’:
‘NM_001256678.1°}1}

} will be translated to a generator: (

6.9. biothings.utils 161

http://docs.python.org/2/library/shlex.html#parsing-rules
http://docs.python.org/2/library/shlex.html#parsing-rules

BioThings SDK

(“exac_nontcga”, {“af”: 0.00001883}), (“gnomad_exome.af”, {“af’:

0.0000119429, “af_afr™:

0.000123077}), (“gnomad_exome”, {“af”: {“af’: 0.0000119429, “af _afr”: 0.000123077}}),
(“snpeff.ann”, {“effect”: “intron_variant”, “feature_id”: “NM_014672.3"}), (“snpeff.ann”, {“‘effect”:

“intron_variant”, “feature_id”: “NM_001256678.1"}), (“snpeff.ann”, [{ ...
“ann”: [{ ... L,{... }1}), (", {‘exac_nontcga’: {...}, ‘gnomad_exome’: {..

) or when traversing leaf nodes: (

(‘exac_nontcga.af’, 0.00001883), (‘gnomad_exome.af.af’,

L ..o 1D, (“snpeff”,
.}, ‘snpeff’: {...}})

0.0000119429), (‘gno-

mad_exome.af.af_afr’, 0.000123077), (‘snpeff.ann.effect’, ‘intron_variant’), (‘snpeff.ann.feature_id’,

‘NM_014672.3’), (‘snpeff.ann.effect’, ‘intron_variant’),

‘NM_001256678.1")
)

biothings.utils.common.uncompressall (folder)
Try to uncompress any known archive files in folder

biothings.utils.common.untarall (folder, pattern="*tar")
untar all *. tar files in “folder”

biothings.utils.common.untargzall (folder, pattern="*.tar.gz")
gunzip and untar all *. tar.gz files in “folder”

biothings.utils.common.unxzall (folder, pattern="*xz")
unxz all xz files in “folder”, in “folder”

biothings.utils.common.unzipall (folder, pattern="*zip")
unzip all zip files in “folder”, in “folder”

6.9.4 biothings.utils.configuration

(‘snpeff.ann.feature_id’,

class biothings.utils.configuration.ConfigAttrMeta (confinod: biothings.utils.configuration.MetaField
= <factory>, section:
biothings.utils.configuration.Text = <factory>,

description:

biothings.utils.configuration. Paragraph =

<factory>, readonly:

biothings.utils.configuration.Flag = <factory>,
hidden: biothings.utils.configuration.Flag =

<factory=>, invisible:

biothings.utils.configuration.Flag = <factory>)

Bases: object

asdict(

commit ()

confmod: MetaField
description: Paragraph
feed(field, value)

hidden: Flag

invisible: Flag

162

Chapter 6. Quick Start

BioThings SDK

readonly: Flag
reset()
section: Text
update (meta)

class biothings.utils.configuration.ConfigLine(seq)
Bases: UserString
PATTERNS = (('hidden', re.compile('A#\\s?-\\s*hide\\s*-\\s?#\\s*$'), <function
ConfigLine.<lambda>>), ('invisible',
re.compile('A#\\s?-\\s*invisible\\s*-\\s?#\\s*$'), <function ConfigLine.<lambda>>),
('readonly', re.compile('*#\\s?-\\s*readonly\\s*-\\s?#\\s*$'), <function
ConfigLine.<lambda>>), ('section', re.compile('A#\\s?*\\s*(.*)\\s**\\s?#\\s*$'),
<function ConfigLine.<lambda>>), ('description', re.compile('.*\\s*#\\s+(.*)$"),
<function ConfigLine.<lambda>>))

match()

class biothings.utils.configuration.ConfigLines (initlist=None)
Bases: UserList

parse (attrs=())

class biothings.utils.configuration.ConfigurationDefault (default, desc)
Bases: object

exception biothings.utils.configuration.ConfigurationError
Bases: Exception

class biothings.utils.configuration.ConfigurationValue (code)
Bases: object

type to wrap default value when it’s code and needs to be interpreted later code is passed to eval() in the context
of the whole “config” dict (so for instance, paths declared before in the configuration file can be used in the code
passed to eval) code will also be executed through exec() if eval() raised a syntax error. This would happen
when code contains statements, not just expression. In that case, a variable should be created in these statements
(named the same as the original config variable) so the proper value can be through ConfigurationManager.

get_value(name, conf)
Return value by eval’ing code in self.code, in the context of given configuration dict (namespace), for given
config parameter name.
class biothings.utils.configuration.ConfigurationWrapper (default config, conf)
Bases: object
Wraps and manages configuration access and edit. A singleton instance is available throughout all hub apps using
biothings.config or biothings.hub.config after calling import biothings.hub. In addition to providing config value

access, either from config files or database, config manager can supersede attributes of a class with values coming
from the database, allowing dynamic configuration of hub’s elements.

When constructing a ConfigurationWrapper instance, variables will be defined with default values coming from
default_config, then they can be overridden by conf’s values, or new variables will be added if not defined in
default_conf. Only metadata come from default_config will be used.

get_value_f£from_db (name)

6.9. biothings.utils 163

BioThings SDK

get_value_from_file(name)
property modified

property readonly

reset (name=None)

show ()

store_value_to_db (name, value)
supersede (klass)

supersede class variable with db values

class biothings.utils.configuration.Flag(value=None)
Bases: MetaField

default
alias of bool

feed (value)
class biothings.utils.configuration.MetaField(value=None)
Bases: object
clear()
default
alias of None

feed (value)
property value

class biothings.utils.configuration.Paragraph(value=None)
Bases: MetaField

default
alias of 1ist

feed (value)
property value

class biothings.utils.configuration.Text (value=None)
Bases: MetaField

feed (value)
biothings.utils.configuration.is_jsonable(x)

biothings.utils.configuration.set_default_folder (data_archive_root, sub_folder)

set default sub folder based on data_archive_root

164 Chapter 6. Quick Start

BioThings SDK

6.9.5 biothings.utils.dataload

Utility functions for parsing flatfiles, mapping to JSON, cleaning.
class biothings.utils.dataload.MinType

Bases: object
biothings.utils.dataload.alwayslist (value)

If input value is not a list/tuple type, return it as a single value list.

biothings.utils.dataload.boolean_convert(d, convert_keys=None, level=0)
Convert values specified by convert_keys in document d to boolean. Dotfield notation can be used to specify
inner keys.

Note that None values are converted to False in Python. Use dict_sweep() before calling this function if such
False values are not expected. See https://github.com/biothings/biothings.api/issues/274 for details.

biothings.utils.dataload.dict_apply(d, key, value, sort=True)
add value to d[key], append it if key exists

r>>> d={'a": 1}

>>> dict_apply(d, 'a', 2)
{'a': [1, 2]}

>>> dict_apply(d, 'a', 3)
{'a': [1, 2, 3]}

>>> dict_apply(d, 'b', 2)
{'a': 1, 'b': 2}

biothings.utils.dataload.dict_attrmerge (dict_li, removedup=True, sort=True, special_fns=None)
dict_attrmerge([{‘a’: 1, ‘b’:[2,3]},
{*a’: [1,2], *b’:[3,5], ‘c’=4}])

should return
{‘a’: [L,2], ‘b:[2,3,5], ‘c’=4}

special_fns is a dictionary of {attr: merge_fn} used for some special attr, which need special merge_fn e.g.,
{ “uniprot’: _merge_uniprot}

biothings.utils.dataload.dict_convert (_dict, keyfn=None, valuefn=None)

Return a new dict with each key converted by keyfn (if not None), and each value converted by valuefn (if not
None).

biothings.utils.dataload.dict_nodup (_dict, sort=True)
biothings.utils.dataload.dict_sweep(d, vals=None, remove_invalid_list=False)
Remove keys whose values are “.”, “-”, *”, “NA”, “none”, “ *“; and remove empty dictionaries
Parameters
* d(dict)— adictionary
» vals (str or list)-—astring or list of strings to sweep, or None to use the default values

e remove_invalid_list (boolean) — when true, will remove key for which list has only
one value, which is part of “vals”. Ex:

test_dict = {'gene': [None, None], 'site': ["Intron", None], 'snp_
—build' : 136}

6.9. biothings.utils 165

https://github.com/biothings/biothings.api/issues/274

BioThings SDK

with remove_invalid_list == False:

[{'gene': [None], 'site': ['Intron'], 'snp_build': 136}]

with remove_invalid_list == True:

[{'site': ['Intron'], 'snp_build': 136}]

biothings.utils.dataload.dict_to_list(gene_d)

return a list of genedoc from genedoc dictionary and make sure the “_id” field exists.

biothings.utils.dataload.dict_traverse(d, func, traverse_list=False)
Recursively traverse dictionary d, calling func(k,v) for each key/value found. func must return a tu-
ple(new_key,new_value)

biothings.utils.dataload.dict_walk(dictionary, key_func)
Recursively apply key_func to dict’s keys

biothings.utils.dataload.dupline_seperator (dupline, dup_sep, dup_idx=None, strip=False)

for a line like this:

[a b1,b2 cl,c2

return a generator of this list (breaking out of the duplicates in each field):

[Ca,bl,cl),
(a,b2,cl),
(a,bl,c2),
(a,b2,c2)]

Example:

dupline_seperator(dupline=['a', 'bl,b2', 'cl,c2'],
dup_idx=[1,2],
dup_sep=", ")

if dup_idx is None, try to split on every field. if strip is True, also tripe out of extra spaces.

biothings.utils.dataload.file_merge (infiles, outfile=None, header=1, verbose=1)

Merge a list of input files with the same format. If header is n then the top n lines will be discarded since reading
the 2nd file in the list.

biothings.utils.dataload.float_convert(d, include_keys=None, exclude_keys=None)

Convert elements in a document to floats.

By default, traverse all keys If include_keys is specified, only convert the list from include_keys a.b, a.b.c If
exclude_keys is specified, only exclude the list from exclude_keys

Parameters
* d - adictionary to traverse keys on
* include_keys — only convert these keys (optional)
» exclude_keys — exclude all other keys except these keys (optional)

Returns
generate key, value pairs

166 Chapter 6. Quick Start

BioThings SDK

biothings.utils.dataload.id_strip(id_list)
biothings.utils.dataload.int_convert(d, include_keys=None, exclude_keys=None)
Convert elements in a document to integers.

By default, traverse all keys If include_keys is specified, only convert the list from include_keys a.b, a.b.c If
exclude_keys is specified, only exclude the list from exclude_keys

Parameters
* d - adictionary to traverse keys on
* include_keys — only convert these keys (optional)
» exclude_keys — exclude all other keys except these keys (optional)

Returns
generate key, value pairs
biothings.utils.dataload.list2dict (a_list, keyitem, alwayslist=False)

Return a dictionary with specified keyitem as key, others as values. keyifem can be an index or a sequence of
indexes. For example:

li=[['A",'a",1],

[lB','a"z]’
['A','b",31]
list2dict(1i,0)---> {'A":[('a',1),('b",3)],

'B':('a',2)}

L

If alwayslist is True, values are always a list even there is only one item in it:

(1ist2dict(li,0,True)---> {'A':[('a',1),('b",3)],
'B':[('a",2),]1}

L

biothings.utils.dataload.list_itemcnt (a_list)

Return number of occurrence for each item in the list.
biothings.utils.dataload.list_split(d, sep)

Split fields by sep into comma separated lists, strip.
biothings.utils.dataload.listitems (a_list, *idx)

Return multiple items from list by given indexes.

biothings.utils.dataload.listsort(a_list, by, reverse=False, cmp=None, key=None)
Given a_list is a list of sub(list/tuple.), return a new list sorted by the ith (given from “by” item) item of each
sublist.

biothings.utils.dataload.llist(li, sep="¢")

Nicely output the list with each item a line.

biothings.utils.dataload.merge_dict(dict li, attr_li, missingvalue=None)

Merging multiple dictionaries into a new one. Example:

In [136]: d1 = {'idl': 100, 'id2': 200}

In [137]: d2 = {'idl': 'aaa', 'id2': 'bbb', 'id3': 'ccc'}
In [138]: merge_dict([dl,d2], ['number', 'string'])
Out[138]:

{'id1l': {'number': 100, 'string': 'aaa'},

(continues on next page)

6.9. biothings.utils 167

BioThings SDK

(continued from previous page)
'id2': {'number': 200, 'string': 'bbb'},
'id3': {'string': 'ccc'}}
In [139]: merge_dict([dl,d2], ['number', 'string'], missingvalue='NA")

Out[139]:

{'id1l': {'number': 100, 'string': 'aaa'},
'id2': {'number': 200, 'string': 'bbb'},
'id3': {'number': 'NA', 'string': 'ccc'}}

biothings.utils.dataload.merge_duplicate_rows (rows, db)

@param rows: rows to be grouped by @param db: database name, string

biothings.utils.dataload.merge_root_keys(docl, doc2, exclude=None)
EX: dl = {“ id”:1’”a”:”a”,”b”:{“k”:”b”}}
d2 = {“_id”: 1 ’79a7’:7’A””?b’7: {“k”:”B”}’”C”: 123}

[T

Both documents have the same _id, and 2 root keys, “a” and “b”. Using this storage, the resulting document
will be:

{‘_id’: 1’ ‘a’: [‘A’, 4a7], ‘b’: [{ gks: ch }’ {‘k’: ‘b’}],”C”:123}
biothings.utils.dataload.merge_struct(v/, v2, aslistofdict=None, include=None, exclude=None)

merge two structures, vl and v2, into one. :param aslistofdict: a string indicating the key name that should be
treated as a list of dict :param include: when given a list of strings, only merge these keys (optional) :param
exclude: when given a list of strings, exclude these keys from merging (optional)

biothings.utils.dataload.normalized_value (value, sort=True)

Return a “normalized” value: 1. if a list, remove duplicate and sort it 2. if a list with one item, convert to that
single item only 3. if a list, remove empty values 4. otherwise, return value as it is.

biothings.utils.dataload.rec_handler (infile, block_end="n', skip=0, include_block_end=False,
as_list=False)

A generator to return a record (block of text) at once from the infile. The record is separated by one or more
empty lines by default. skip can be used to skip top n-th lines if include_block_end is True, the line matching
block_end will also be returned. If as_list is True, return a list of lines in one record.

biothings.utils.dataload.safe_type(f, val)

Convert an input string to int/float/... using passed function. If the conversion fails then None is returned. If
value of a type other than a string then the original value is returned.

biothings.utils.dataload.tab2dict (datafile, cols, key, alwayslist=False, **kwargs)
biothings.utils.dataload.tab2dict_iter (datafile, cols, key, alwayslist=False, **kwargs)

Parameters

e cols (array of int)- an array of indices (of a list) indicating which element(s) are kept
in bulk

* key (int) — an index (of a list) indicating which element is treated as a bulk key

Iterate datafile by row, subset each row (as a list of strings) by cols. Adjacent rows sharing the same value at the
key index are put into one bulk. Each bulk is then transformed to a dict with the value at the key index as the dict
key.

E.g. given the following datafile, cols=[0,1,2], and key=1, two bulks are generated:

key

168 Chapter 6. Quick Start

BioThings SDK

al bl cl a2 bl c2 # bulk_1 => {bl: [(al, cl), (a2, c2), (a3, c3)]} #
a3 bl c3 a4 b2 c4 a5 b2c5
bulk_2 => {b2: [(a4, c4), (a5, c5), (ab, c6)]} # a6 b2 c6

biothings.utils.dataload.tab2list (datafile, cols, **kwargs)

biothings.utils.dataload.tabfile_feeder (datdfile, header=1, sep=\t', includefn=None,
coerce_unicode=True, assert_column_no=None)

a generator for each row in the file.
biothings.utils.dataload.tabfile_tester (datdfile, header=1, sep="t")
biothings.utils.dataload.to_boolean(val, true_str=None, false_str=None)

Normalize str value to boolean value

biothings.utils.dataload.to_float (val)

convert an input string to int

biothings.utils.dataload.to_int (val)

convert an input string to float

biothings.utils.dataload.to_number (val)
convert an input string to int/float.

biothings.utils.dataload.traverse_keys(d, include_keys=None, exclude_keys=None)
Return all key, value pairs for a document.

By default, traverse all keys If include_keys is specified, only traverse the list from include_kes a.b, a.b.c If
exclude_keys is specified, only exclude the list from exclude_keys

if a key in include_keys/exclude_keys is not found in d, it’s skipped quietly.
Parameters
* d - adictionary to traverse keys on
* include_keys — only traverse these keys (optional)
» exclude_keys — exclude all other keys except these keys (optional)

Returns
generate key, value pairs

biothings.utils.dataload.unique_ids (src_module)
biothings.utils.dataload.unlist(d)
biothings.utils.dataload.unlist_incexcl(d, include_keys=None, exclude_keys=None)
Unlist elements in a document.
If there is 1 value in the list, set the element to that value. Otherwise, leave the list unchanged.

By default, traverse all keys If include_keys is specified, only traverse the list from include_keys a.b, a.b.c If
exclude_keys is specified, only exclude the list from exclude_keys

Parameters
* d - adictionary to unlist
* include_keys — only unlist these keys (optional)

» exclude_keys — exclude all other keys except these keys (optional)

6.9. biothings.utils 169

BioThings SDK

Returns
generate key, value pairs

biothings.utils.dataload.update_dict_recur(d, u)
Update dict d with dict u’s values, recursively (so existing values in d but not in u are kept even if nested)

biothings.utils.dataload.updated_dict(_dict, attrs)
Same as dict.update, but return the updated dictionary.

biothings.utils.dataload.value_convert (_dict, fn, traverse_list=True)

For each value in _dict, apply fn and then update _dict with return the value. If traverse_list is True and a value
is a list, apply fn to each item of the list.

biothings.utils.dataload.value_convert_incexcl(d, fu, include_keys=None, exclude_keys=None)

Convert elements in a document using a function fn.

By default, traverse all keys If include_keys is specified, only convert the list from include_keys a.b, a.b.c If
exclude_keys is specified, only exclude the list from exclude_keys

Parameters
* d - adictionary to traverse keys on
 fn - function to convert elements with
* include_keys — only convert these keys (optional)
» exclude_keys — exclude all other keys except these keys (optional)

Returns
generate key, value pairs

biothings.utils.dataload.value_convert_to_number (d, skipped_keys=None)

Convert string numbers into integers or floats; skip converting certain keys in skipped_keys list.

6.9.6 biothings.utils.diff

Utils to compare two list of gene documents, requires to setup Biothing Hub.

biothings.utils.diff.diff_collections(bl, b2, use_parallel=True, step=10000)
bl, b2 are one of supported backend class in databuild.backend. e.g.:

bl = DocMongoDBBackend(cl)
b2 = DocMongoDBBackend(c2)

biothings.utils.diff.diff_collections_batches(bl, b2, result_dir, step=10000)
b2 is new collection, b1 is old collection

biothings.utils.diff.diff_docs_jsonpatch(bl, b2, ids, fastdiff=False, exclude_attrs=None)

if fastdiff is True, only compare the whole doc, do not traverse into each attributes.

biothings.utils.diff.get_backend (uri, db, col, bk_type)
biothings.utils.diff.get_mongodb_uri (backend)

biothings.utils.diff.two_docs_iterator(bl, b2, id_list, step=10000, verbose=False)

170 Chapter 6. Quick Start

BioThings SDK

6.9.7 biothings.utils.doc_traversal

Some utility functions that do document traversal

class biothings.utils.doc_traversal.Queue

Bases: object
isempty()
popQ)
get next obj from queue
push (obj)
put obj on queue

exception biothings.utils.doc_traversal.QueueEmptyError

Bases: Exception

class biothings.utils.doc_traversal.Stack
Bases: object

isempty()
pop ()
push (obj)
put obj on stack

exception biothings.utils.doc_traversal.StackEmptyError

Bases: Exception

biothings.utils.doc_traversal.breadth_first_recursive_traversal (doc, path=None)

doesn’t exactly implement breadth first ordering it seems, not sure why. ..

biothings.utils.doc_traversal.breadth_first_traversal (doc)

Yield a 2 element tuple for every k, v pair in document items (nodes are visited in breadth first order k is itself a
tuple of keys annotating the path for this node (v) to root v is the node value

biothings.utils.doc_traversal.depth_first_recursive_traversal (doc, path=None)

biothings.utils.doc_traversal.depth_first_traversal (doc)

Yield a 2 element tuple for every k, v pair in document items (nodes are visited in depth first order k is itself a
tuple of keys annotating the path for this node (v) to root v is the node value

6.9.8 biothings.utils.docs

biothings.utils.docs.exists_or_null (doc, field, val=None)

biothings.utils.docs.flatten_doc(doc, outfield_sep="", sort=True)

This function will flatten an elasticsearch document (really any json object). outfield_sep is the separator between
the fields in the return object. sort specifies whether the output object should be sorted alphabetically before
returning

(otherwise output will remain in traveral order)

biothings.utils.docs. flatten_doc_2(doc, outfield_sep="", sort=True)

6.9. biothings.utils 171

BioThings SDK

6.9.9 biothings.utils.dotfield

biothings.utils.dotfield.compose_dot_fields_by_fields(doc, fields)

Reverse funtion of parse_dot_fields

biothings.utils.dotfield.make_object (artr, value)

Create dictionary following the input dot notation and the value.

Example:

make_object('a.b.c', 100) --> {a:{b:{c:100}}}
make_object(['a','b','c"'], 100) --> {a:{b:{c:100}}}

biothings.utils.dotfield.merge_object(objl, obj2)

biothings.utils.dotfield.parse_dot_fields(doc)
Example: parse_dot_fields({‘a’: 1, ‘b.c’: 2, ‘b.a.c’: 3}) should return {‘a’: 1, ‘b’: {‘a’: {‘c’: 3}, ‘c’: 2}}

6.9.10 biothings.utils.dotstring

biothings.utils.dotstring.key_value (dictionary, key)

Return a generator for all values in a dictionary specific by a dotstirng (key)
if key is not found from the dictionary, None is returned.
Parameters
* dictionary - a dictionary to return values from
» key — key that specifies a value in the dictionary
Returns

generator for values that match the given key

biothings.utils.dotstring.last_element (d, key_list)

Return the last element and key for a document d given a docstring.

A document d is passed with a list of keys key_list. A generator is then returned for all elements that match all
keys. Not that there may be a 1-to-many relationship between keys and elements due to lists in the document.

Parameters
¢ d — document d to return elements from
* key_list — list of keys that specify elements in the document d

Returns
generator for elements that match all keys

biothings.utils.dotstring.list_length(d, field)
Return the length of a list specified by field.

If field represents a list in the document, then return its length. Otherwise return 0.
Parameters
* d - a dictionary

» field - the dotstring field specifying a list

172 Chapter 6. Quick Start

BioThings SDK

biothings.utils.dotstring.remove_key (dictionary, key)
Remove field specified by the docstring key

Parameters
* dictionary - a dictionary to remove the value from
* key — key that specifies an element in the dictionary

Returns
dictionary after changes have been made

biothings.utils.dotstring.set_key_value (dictionary, key, value)

Set values all values in dictionary matching a dotstring key to a specified value.
if key is not found in dictionary, it just skip quietly.

Parameters
» dictionary — a dictionary to set values in
* key — key that specifies an element in the dictionary

Returns
dictionary after changes have been made

6.9.11 biothings.utils.es

class biothings.utils.es.Collection(colname, db)
Bases: object

count ()

find (filter=None, projection=None, *args, **kwargs)
find_one(*args, **kwargs)

insert_one (document, *args, **kwargs)

remove (query)

replace_one (filter, replacement, upsert=False, *args, **kwargs)
save(doc, *args, **kwargs)

update(*args, **kwargs)

update_many (filter, update, upsert=False, *args, **kwargs)
update_one (filter, update, upsert=False, *args, **kwargs)

class biothings.utils.es.Database

Bases: IDatabase
CONFIG = None

property address

Returns sufficient information so a connection to a database can be created. Information can be a dictionary,
object, etc... and depends on the actual backend

6.9. biothings.utils 173

BioThings SDK

create_collection(colname)

Create a table/colleciton named colname. If backend is using a schema-based database (ie. SQL), backend
should enforce the schema with at least field “_id” as the primary key (as a string).

class biothings.utils.es.ESIndex(client, index_name)

Bases: object

An Elasticsearch Index Wrapping A Client. Counterpart for pymongo.collection.Collection

property doc_type

class biothings.utils.es.ESIndexer (index, doc_type='_doc', es_host="localhost:9200', step=500,
step_size=10, number_of_shards=1, number_of_replicas=0,

check_index=True, **kwargs)

Bases: object

build_index (**kwargs)

check_index()

Check if index is an alias, and update self._index to point to actual index

TODO: the overall design of ESIndexer is not great. If we are exposing ES
implementation details (such as the abilities to create and delete indices, create and update aliases,
etc.) to the user of this Class, then this method doesn’t seem that out of place.

clean_field(field, dryrun=True, step=5000)

remove a top-level field from ES index, if the field is the only field of the doc, remove the doc as well. step
is the size of bulk update on ES try first with dryrun turned on, and then perform the actual updates with

dryrun off.

close()

count (**kwargs)

count_src(**kwargs)

create_index (**kwargs)
create_repository(repo_name, settings)

delete_doc(id)
delete a doc from the index based on passed id.

delete_docs (ids, step=None)
delete a list of docs in bulk.

delete_index (index=None)
doc_feeder (**kwargs)
doc_feeder_using_helper (**kwargs)

exists(**kwargs)

return True/False if a biothing id exists or not.

exists_index(index: str | None = None)

find_biggest_doc (fields_li, min=5, return_doc=False)

return the doc with the max number of fields from fields_li.

174

Chapter 6

. Quick Start

BioThings SDK

flush_and_refresh()
get_alias(index: str | None = None, alias_name: str | None = None) — List[str]
Get indices with alias associated with given index name or alias name
Parameters
¢ index — name of index
¢ alias_name — name of alias

Returns
Mapping of index names with their aliases

get_biothing (**kwargs)

get_docs (**kwargs)

Return matching docs for given ids iterable, if not found return None. A generator is returned to the matched
docs. If only_source is False, the entire document is returned, otherwise only the source is returned.

get_id_list(**kwargs)

get_indice_names_by_settings(index: str | None = None, sort_by_creation_date=False, reverse=False)
— List[str]

Get list of indices names associated with given index name, using indices’ settings
Parameters
* index — name of index
e sort_by_creation_date — sort the result by indice’s creation_date
» reverse — control the direction of the sorting

Returns
list of index names (str)

get_indices_from_snapshots (repo_name, snapshot_name)
get_internal_number_of_replicas()
get_mapping)

return the current index mapping

get_mapping_meta()
return the current _meta field.

get_repository(repo_name)

get_restore_status (index_name=None)

get_settings(index: str | None = None) — Mapping[str, Mapping]
Get indices with settings associated with given index name

Parameters
index — name of index

Returns
Mapping of index names with their settings

get_snapshot_status (repo, snapshot)

6.9.

biothings.utils 175

BioThings SDK

get_snapshots (repo_name, snapshot_name)
index (doc, id=None, action="index")
add a doc to the index. If id is not None, the existing doc will be updated.
index_bulk (docs, step=None, action="index")
mexists(**kwargs)
open()
optimize (**kwargs)
optimize the default index.

reindex(src_index, is_remote=False, **kwargs)

In order to reindex from remote, - src es_host must be set to an IP which the current ES host can connect
to.

It means that if 2 indices locate in same host, the es_host can be set to localhost, but if they are in
different hosts, an IP must be used instead.

e If src host uses SSL, https must be included in es_host. Eg: https://192.168.1.10:9200

¢ src host must be whitelisted in the current ES host.

Ref: https://www.elastic.co/guide/en/elasticsearch/reference/7.17/reindex-upgrade-remote.html

restore (repo_name, snapshot_name, index_name=None, purge=False)
sanitize_settings(settings)

Clean up settings dictinary to remove those static fields cannot be updated.

LEINT3 LEINT3

like: “uuid”, “provided_name”, “creation_date”, “version”,
settings will be updated both in-place and returned as well.
set_internal_number_of_replicas (number_of_replicas=None)
snapshot (repo, snapshot, mode=None, **params)
update (id, extra_doc, upsert=True)
update an existing doc with extra_doc. allow to set upsert=True, to insert new docs.

update_alias(alias_name: str, index: str | None = None)

Create or update an ES alias pointing to an index

Creates or updates an alias in Elasticsearch, associated with the given index name or the underlying index
of the ESIndexer instance.

When the alias name does not exist, it will be created. If an existing alias already exists, it will be updated
to only associate with the index.

When the alias name already exists, an exception will be raised, UNLESS the alias name is the same as
index name that the ESIndexer is initialized with. In this case, the existing index with the name collision
will be deleted, and the alias will be created in its place. This feature is intended for seamless migration
from an index to an alias associated with an index for zero-downtime installs.

Parameters
¢ alias_name — name of the alias

¢ index — name of the index to associate with alias. If None, the index of the ESIndexer
instance is used.

176 Chapter 6. Quick Start

https://192.168.1.10:9200
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/reindex-upgrade-remote.html

BioThings SDK

Raises

IndexerException —

update_docs (partial_docs, upsert=True, step=None, **kwargs)

update a list of partial_docs in bulk. allow to set upsert=True, to insert new docs.

update_mapping (m)

update_mapping_meta (meta)

update_settings(settings, close=False, **params)

Parameters

Ref:

¢ settings (-) — should be valid ES index’s settings.

¢ close (-) — In order to update static settings, the index must be closed first.

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index-modules.html#

index-modules-settings

exception biothings.utils.es.IndexerException

Bases: Exception

exception biothings.utils.es.MappingError

Bases: Exception

biothings.utils.es.generate_es_mapping(inspect_doc, init=True, level=0)

Generate an ES mapping according to “inspect_doc”, which is produced by biothings.utils.inspect module

biothings.utils.es.get_api()

biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.
biothings.utils.

biothings.utils.

es.

es

es.

es.

es.

es.

es

es.

es

es.

es.

es.

es.

es

es.

get_cmd O

.get_data_plugin(Q)

get_doc_type(es_client, index_name)
get_es(es_host, timeout=120, max_retries=3, retry_on_timeout=False)
get_event()

get_hub_config()

.get_hub_db_conn()

get_last_command ()

.get_source_fullname(col_name)

get_src_build()
get_src_build_config()
get_src_conn()

get_src_db (conn=None)

.get_src_dump()

get_src_master()

6.9. biothings.utils

177

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index-modules.html#index-modules-settings
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index-modules.html#index-modules-settings

BioThings SDK

biothings.utils.es.verify_ids(doc_iter, es_host, index, doc_type=None, step=100000)

verify how many docs from input interator/list overlapping with existing docs.

biothings.utils.es.wrapper (func)

this wrapper allows passing index and doc_type from wrapped method.

6.9.12 biothings.utils.exclude_ids

class biothings.utils.exclude_ids.ExcludeFieldsById (exclusion_ids, field_Ist, min_list_size=1000)

Bases: object

This class provides a framework to exclude fields for certain identifiers. Up to three arguments are passed to this
class, an identifier list, a list of fields to remove, and minimum list size. The identifier list is a list of document
identifiers to act on. The list of fields are fields that will be removed; they are specified using a dotstring notation.
The minimum list size is the minimum number of elements that should be in a list in order for it to be removed.
The ‘drugbank’, ‘chebi’, and ‘ndc’ data sources were manually tested with this class.

Fields to truncate are specified by field_Ist. The dot-notation is accepted.

6.9.13 biothings.utils.hub

exception biothings.utils.hub.AlreadyRunningException

Bases: Exception

class biothings.utils.hub.BaseHubReloader (paths, reload_func, wait=5.0)
Bases: object
Monitor sources’ code and reload hub accordingly to update running code

Monitor given paths for directory deletion/creation and for file deletion/creation. Poll for events every ‘wait’
seconds.

pollQ)
Start monitoring changes on files and/directories
watched_files()
Return a list of files/directories being watched
class biothings.utils.hub.CommandDefinition
Bases: dict
exception biothings.utils.hub.CommandError
Bases: Exception
class biothings.utils.hub.CommandInformation
Bases: dict
exception biothings.utils.hub.CommandNotAllowed
Bases: Exception

class biothings.utils.hub.CompositeCommand (cmd)

Bases: str

Defines a composite hub commands, that is, a new command made of other commands. Useful to define shortcuts
when typing commands in hub console.

178 Chapter 6. Quick Start

BioThings SDK

class biothings.utils.hub.HubShell (**kwargs: Any)
Bases: InteractiveShell

Create a configurable given a config config.
Parameters

» config (Config) — If this is empty, default values are used. If config is a Config instance,
it will be used to configure the instance.

* parent (Configurable instance, optional) — The parent Configurable instance of
this object.

Notes

Subclasses of Configurable must call the __init__() method of Configurable before doing anything else
and using super():

class MyConfigurable(Configurable):
def __init__(self, config=None):
super (MyConfigurable, self).__init__(config=config)
Then any other code you need to finish initialization.

This ensures that instances will be configured properly.

cmd = None

cmd_cnt = None

classmethod command_info (id=None, running=None, failed=None)
eval (line, return_cmdinfo=False, secure=False)
extract_command_name (cmd)

help (func=None)

Display help on given function/object or list all available commands

launch (pfunc)

Helper to run a command and register it pfunc is partial taking no argument. Command name is generated
from partial’s func and arguments

launched_commands = {}
pending_outputs = {}
classmethod refresh_commands()

register_command (cmd, result, force=False)

Register a command ‘cmd’ inside the shell (so we can keep track of it). ‘result’ is the original value that was
returned when cmd was submitted. Depending on the type, returns a cmd number (ie. result was an asyncio
task and we need to wait before getting the result) or directly the result of ‘cmd’ execution, returning, in
that case, the output.

register_managers (managers)

restart (force=False, stop=False)

6.9. biothings.utils 179

BioThings SDK

classmethod save_cmd(_id, cmd)
classmethod set_command_counter()
set_commands (basic_commands, *extra_ns)
stop (force=False)

exception biothings.utils.hub.NoSuchCommand

Bases: Exception

class biothings.utils.hub.TornadoAutoReloadHubReloader (paths, reload_func, wait=5)
Bases: BaseHubReloader

Reloader based on tornado.autoreload module

Monitor given paths for directory deletion/creation and for file deletion/creation. Poll for events every ‘wait’
seconds.

add_watch(paths)

This method recursively adds the input paths, and their children to tornado autoreload for watching them.
If any file changes, the tornado will call our hook to reload the hub.

Each path will be forced to become an absolute path. If a path is matched excluding patterns, it will be
ignored. Only file is added for watching. Directory will be passed to another add_watch.

monitor()
watched_files()
Return a list of files/directories being watched

biothings.utils.hub.exclude_from_reloader (path)
biothings.utils.hub.get_hub_reloader (*args, **kwargs)
biothings.utils.hub. jsonreadify(cmd)

biothings.utils.hub.publish_data_version(s3_bucket, s3_folder, version_info, update_latest=True,
aws_key=None, aws_secret=None)

Update remote files:

* versions.json: add version_info to the JSON list
or replace if arg version_info is a list

* latest.json: update redirect so it points to latest version url

“versions” is dict such as:

{"build_version":"...", # version name for this release/build
"require_version":"...", # version required for incremental update
"target_version": "...", # version reached once update is applied
"type" : "incremental |full" # release type
"release_date" : "...", # ISO 8601 timestamp, release date/time
"url": "http...."} # url pointing to release metadata

biothings.utils.hub.stats(src_dump)

180 Chapter 6. Quick Start

BioThings SDK

biothings.utils.hub.template_out (field, confdict)

Return field as a templated-out filed, substituting some “%(...)s” part with confdict, Fields can follow dotfield
notation. Fields like “$(...)” are replaced with a timestamp following specified format (see time.strftime) Ex-
ample:

confdict = {"a":"one"}
field = " _two_three_$(%Y%m) "
=> "one_two_three_201908" # assuming we're in August 2019

6.9.14 biothings.utils.hub_db

hub_db module is a place-holder for internal hub database functions. Hub DB contains informations about sources,
configurations variables, etc... It’s for internal usage. When biothings.config_for_app() is called, this module will be
“filled” with the actual implementations from the specified backend (speficied in config.py, or defaulting to MongoDB).

Hub DB can be implemented over different backend, it’s orginally been done using MongoDB, so the dialect is very
inspired by pymongo. Any hub db backend implementation must implement the functions and classes below. See
biothings.utils.mongo and biothings.utils.sqlit3 for some examples.

class biothings.utils.hub_db.ChangeListener

Bases: object
read()

class biothings.utils.hub_db.ChangeWatcher
Bases: object

classmethod add(listener)

col_entity = {'cmd': 'command', 'hub_config': 'config', 'src_build': ‘'build’,
'src_build_config': ‘'build_config', 'src_dump': 'source', 'src_master': 'master'}

do_publish = False

event_queue = <Queue at 0x7f7b5dae7760 maxsize=0>
listeners = {}

classmethod monitor (func, entity, op)

classmethod publish()

classmethod wrap (getfunc)

class biothings.utils.hub_db.Collection(colname, db)

Bases: object

Defines a minimal subset of MongoDB collection behavior. Note: Collection instances must be pickleable (if
not, __getstate__ can be implemented to deal with those attributes for instance)

Init args can differ depending on the backend requirements. colname is the only one required.

count ()

Return the number of documents in the collection

database()

Return the database name

6.9. biothings.utils 181

BioThings SDK

find (*args, **kwargs)

Return an iterable of documents matching criterias defined in *args/0] (which will be a dict). Query
dialect is a minimal one, inspired by MongoDB. Dict can contain the name of a key, and the value being
searched for. Ex: {“field1”:”valuel”} will return all documents where fieldl == “valuel”. Nested key
(field1.subfield1) aren’t supported (no need to implement). Exact matches only are required.

If no query is passed, or if query is an empty dict, return all documents.

find_one (*args, **kwargs)

Return one document from the collection. *args will contain a dict with the query parameters. See also
find()

insert_one (doc)

Insert a document in the collection. Raise an error if already inserted
property name

Return the collection/table name

remove (query)

Delete all documents matching ‘query’

replace_one (query, doc)
Replace a document matching ‘query’ (or the first found one) with passed doc
save (doc)
Shortcut to update_one() or insert_one(). Save the document, by either inserting if it doesn’t exist, or update
existing one
update (query, what)
Same as update_one() but operate on all documents matching ‘query’
update_one (query, what, upsert=False)

Update one document (or the first matching query). See find() for query parameter. “what” tells how to
update the document. $set/$unset/$push operators must be implemented (refer to MongoDB documentation
for more). Nested keys operation aren’t necesary.

class biothings.utils.hub_db.IDatabase

Bases: object

This class declares an interface and partially implements some of it, mimicking mongokit.Connection class. It’s
used to keep used document model. Any internal backend should implement (derives) this interface
property address
Returns sufficient information so a connection to a database can be created. Information can be a dictionary,
object, etc... and depends on the actual backend
collection_names()
Return a list of all collections (or tables) found in this database

create_collection(colname)

Create a table/colleciton named colname. If backend is using a schema-based database (ie. SQL), backend
should enforce the schema with at least field “_id” as the primary key (as a string).

biothings.utils.hub_db.backup (folder="", archive=None)

Dump the whole hub_db database in given folder. “archive” can be pass to specify the target filename, otherwise,
it’s randomly generated

182

Chapter 6. Quick Start

BioThings SDK

Note:

this doesn’t backup source/merge data, just the internal data used by the hub

biothings.

biothings.

biothings
biothings
biothings
biothings
biothings
biothings
biothings

biothings

utils
utils
.utils.
.utils.
.utils.
.utils.
.utils.
.utils.
.utils.

.utils.

.hub_db.
.hub_db.
hub_db.
hub_db.
hub_db.
hub_db.
hub_db.
hub_db.
hub_db.

hub_db.

Restore database from given archive. If drop is True, then delete existing collections

get_api(Q

get_cmd()
get_data_plugin()
get_event()
get_hub_config()
get_src_build(
get_src_build_config()
get_src_dump()
get_src_master()

restore (archive, drop=False)

biothings.utils.hub_db.setup(config)

6.9.15 biothings.utils.info

class biothings.utils.info.DevInfo

Bases: object

get()

class biothings.utils.info.FieldNote (path)

Bases: object

get_field_notes()

Return the cached field notes associated with this instance.

6.9.16 biothings.utils.inspect

This module contains util functions may be shared by both BioThings data-hub and web components. In general, do
not include utils depending on any third-party modules. Note: unittests available in biothings.tests.hub

class biothings.utils.inspect.BaseMode

Bases: object

key = None

merge (target, tomerge)

Merge two different maps together (from tomerge into target)

post (mapt, mode, clean)

6.9. biothings.utils

183

BioThings SDK

report (struct, drep, orig_struct=None)

Given a data structure “struct” being inspected, report (fill) “drep” dictionary with useful values for this
mode, under drep[self.key] key. Sometimes “struct” is already converted to its analytical value at this point
(inspect may count number of dict and would force to pass struct as “1”, instead of the whole dict, where
number of keys could be then be reported), “orig_struct” is that case contains the original structure that
was to be reported, whatever the pre-conversion step did.

template = {}
class biothings.utils.inspect.DeepStatsMode
Bases: StatsMode
key = '_stats'
merge (target_stats, tomerge_stats)
Merge two different maps together (from tomerge into target)
post (mapt, mode, clean)

report (val, drep, orig_struct=None)

Given a data structure “struct” being inspected, report (fill) “drep” dictionary with useful values for this
mode, under drep[self.key] key. Sometimes “struct” is already converted to its analytical value at this point
(inspect may count number of dict and would force to pass struct as “1”, instead of the whole dict, where
number of keys could be then be reported), “orig_struct” is that case contains the original structure that
was to be reported, whatever the pre-conversion step did.

template = {'_stats': {'__vals': [], '"_count': O, '_max': -inf, '_min': inf}}

class biothings.utils.inspect.FieldInspectValidation(warnings: set() = <factory=>, types: set =
<factory>, has_multiple_types: bool = False)

Bases: object

has_multiple_types: bool = False
types: set
warnings: set(Q)

class biothings.utils.inspect.FieldInspection(field_name: str, field_type: str, stats: dict = None,
warnings: list = <factory>)

Bases: object

field_name: str
field_type: str
stats: dict = None
warnings: list

class biothings.utils.inspect.IdentifiersMode

Bases: RegexMode

ids = None
key = '_ident'

matchers = None

184 Chapter 6. Quick Start

BioThings SDK

class biothings.utils.inspect.InspectionValidation

Bases: object

This class provide a mechanism to validate and flag any field which: - contains whitespace - contains upper cased
letter or special characters

(lower-cased is recommended, in some cases the upper-case field names are acceptable, so we should

raise it as a warning and let user to confirm it’s necessary)

¢ when the type inspection detects more than one types
(but a mixed or single value and an array of same type of values are acceptable, or the case of mixed
integer and float should be acceptable too)

Usage:
" result = InspectionValidation.validate(data) °

Adding more rules: - add new code, and message to Warning Enum - add a new staticmethod for validate new
rule and named in format: validate_{warning_code} - add new rule to docstring.

INVALID_CHARACTERS_PATTERN = '[%*a-zA-Z0-9_.]1'
NUMERIC_FIELDS = ['int', 'float']
SPACE_PATTERN = ' '

class Warning(value)
Bases: Enum
An enumeration.

WO01 = 'field name contains whitespace.'

Woeoe2 'field name contains uppercase.'

W003 = 'field name contains special character. Only alphanumeric, dot, or
underscore are valid.'

W004 = 'field name has more than one type.'

to_dict(
static validate(data: List[Fieldlnspection]) — Dict[str, FieldInspectValidation)
static validate_WOO01(field_inspection: FicldInspection, field_validation: FieldlnspectValidation) — bool
static validate_WO02 (field_inspection: FieldInspection, field_validation: FieldlnspectValidation) — bool
static validate_WOO03(field_inspection: FicldInspection, field_validation: FieldlnspectValidation) — bool
static validate_WO004 (field_inspection: FicldInspection, field_validation: FieldInspectValidation) — bool

class biothings.utils.inspect.RegexMode
Bases: BaselMode
matchers = []

merge (target, tomerge)

Merge two different maps together (from tomerge into target)

6.9. biothings.utils 185

BioThings SDK

report (val, drep, orig_struct=None)

Given a data structure “struct” being inspected, report (fill) “drep” dictionary with useful values for this
mode, under drep[self.key] key. Sometimes “struct” is already converted to its analytical value at this point
(inspect may count number of dict and would force to pass struct as “1”, instead of the whole dict, where
number of keys could be then be reported), “orig_struct” is that case contains the original structure that
was to be reported, whatever the pre-conversion step did.

class biothings.utils.inspect.StatsMode

Bases: BaseMode
flatten_stats(stats)

key = '_stats'

maxminiflist (val, func)

merge (target_stats, tomerge_stats)

Merge two different maps together (from tomerge into target)

report (struct, drep, orig_struct=None)

Given a data structure “struct” being inspected, report (fill) “drep” dictionary with useful values for this
mode, under drep[self.key] key. Sometimes “struct” is already converted to its analytical value at this point
(inspect may count number of dict and would force to pass struct as “1”, instead of the whole dict, where
number of keys could be then be reported), “orig_struct” is that case contains the original structure that
was to be reported, whatever the pre-conversion step did.

sumiflist(val)

template = {'_stats': {'_count': O, '_max': -inf, '_min': inf, '_none': 0}}
biothings.utils.inspect.compute_metadata(mapt, mode)
biothings.utils.inspect.flatten_and_validate(data, do_validate=True)

biothings.utils.inspect.flatten_inspection_data(data: Dict[str, Any], current_deep: int =0,
parent_name: str | None = None, parent_type: str |
None = None) — List[Fieldlnspection]

This function will convert the multiple depth nested inspection data into a flatten list Nested key will be appended
with the parent key and seperate with a dot.

biothings.utils.inspect.get_converters (modes, logger=<module 'logging’ from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py'>)

biothings.utils.inspect.get_mode_layer (mode)

biothings.utils.inspect.inspect (struct, key=None, mapt=None, mode="type’, level=0, logger=<module
'logging' from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py'>)

Explore struct and report types contained in it.
Parameters
* struct - is the data structure to explore

* mapt — if not None, will complete that type map with passed struct. This is useful when
iterating over a dataset of similar data, trying to find a good type summary contained in that
dataset.

* level - is for internal purposes, mostly debugging

186 Chapter 6. Quick Start

BioThings SDK

» mode — see inspect_docs() documentation

biothings.utils.inspect.inspect_docs(docs, mode="type', clean=True, merge=False, logger=<module
'logging' from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py">,
pre_mapping=False, limit=None, sample=None, metadata=True,
auto_convert=True)

Inspect docs and return a summary of its structure:
Parameters
» mode — possible values are:
— “type”: (default) explore documents and report strict data structure

— ”mapping”’: same as type but also perform test on data so guess best mapping
(eg. check if a string is splitable, etc...). Implies merge=True

— 7stats”: explore documents and compute basic stats (count,min,max,sum)

— “deepstats’: same as stats but record values and also compute mean,stdev,median
(memory intensive...)

— ”jsonschema”, same as “type” but returned a json-schema formatted result

99 99

mode can also be a list of modes, eg. [“type”,”mapping’’]. There’s little overhead computing
multiple types as most time is spent on actually getting the data.

* clean - don’t delete recorded vqlues or temporary results
* merge — merge scalar into list when both exist (eg. {“val”:..} and [{“val”:...}]
e limit — can limit the inspection to the x first docs (None = no limit, inspects all)

* sample — in combination with limit, randomly extract a sample of ‘limit’ docs (so not nec-
essarily the x first ones defined by limit). If random.random() is greater than sample, doc is
inspected, otherwise it’s skipped

* metadata - compute metadata on the result

* auto_convert — run converters automatically (converters are used to convert one mode’s
output to another mode’s output, eg. type to jsonschema)

biothings.utils.inspect.merge_field_inspections_validations(field_inspections:
List[FieldInspection],
field_validations: Dict[str,
FieldInspectValidation])

Adding any warnings from field_validations to field_inspections with corresponding field name

biothings.utils.inspect.merge_record (target, tomerge, mode)
biothings.utils.inspect.merge_scalar_list (mapt, mode)

biothings.utils.inspect.run_converters(_map, converters, logger=<module 'logging’ from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py'>)

biothings.utils.inspect.simplify_inspection_data(field_inspections: List[FieldInspection]) —
List[Dict[str, Any]]

biothings.utils.inspect.stringify_inspect_doc(dmap)

6.9. biothings.utils 187

BioThings SDK

biothings.utils.inspect.typify_inspect_doc(dmap)

dmap is an inspect which was converted to be stored in a database, namely actual python types were stringify to
be storabled. This function does the oposite and restore back python types within the inspect doc

6.9.17 biothings.utils.jsondiff

The MIT License (MIT)
Copyright (c) 2014 Ilya Volkov

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

biothings.utils. jsondiff.make(src, dst, **kwargs)

6.9.18 biothings.utils.jsonpatch

Apply JSON-Patches (RFC 6902)

class biothings.utils. jsonpatch.AddOperation(operation)
Bases: PatchOperation

Adds an object property or an array element.
apply (ob))
Abstract method that applies patch operation to specified object.

class biothings.utils. jsonpatch.CopyOperation(operation)
Bases: PatchOperation

Copies an object property or an array element to a new location
apply (obj)
Abstract method that applies patch operation to specified object.
exception biothings.utils. jsonpatch.InvalidJlsonPatch
Bases: JsonPatchException
Raised if an invalid JSON Patch is created
class biothings.utils. jsonpatch.JsonPatch(patch)

Bases: object

A JSON Patch is a list of Patch Operations.

188 Chapter 6. Quick Start

BioThings SDK

>>> patch = JsonPatch([

{'op': 'add', 'path': '/foo', 'value': 'bar'},
{'op': 'add', 'path': '/baz', 'value': [1, 2, 31},
{'op': 'remove', 'path': '/baz/1'},

{'op': 'test', 'path': '/baz', 'value': [1, 3]},
{'op': 'replace', 'path': '/baz/0', 'value': 42},
.. {'op': 'remove', 'path': '/baz/1'},

D)
>>> doc = {}

>>> result = patch.apply(doc)

>>> expected = {'foo': 'bar', 'baz': [42]}
>>> result == expected

True

L

JsonPatch object is iterable, so you could easily access to each patch statement in loop:

-

>>> lpatch = list(patch)

>>> expected = {'op': 'add', 'path': '/foo', 'value': 'bar'}
>>> lpatch[0] == expected

True

>>> lpatch == patch.patch

True

L

Also JsonPatch could be converted directly to bool if it contains any operation statements:

(>>> bool (patch)

True

>>> bool (JsonPatch([]))
False

This behavior is very handy with make_patch () to write more readable code:

>>> old = {"foo': 'bar', 'numbers': [1, 3, 4, 8]}
>>> new = {'baz': 'qux', 'numbers': [1, 4, 7]}

>>> patch = make_patch(old, new)

>>> if patch:

document have changed, do something useful
e patch.apply(old)

{...}

apply (orig_obyj, in_place=False, ignore_conflicts=False, verify=False)
Applies the patch to given object.

Parameters
* obj (dict) — Document object.

¢ in_place (bool) — Tweaks way how patch would be applied - directly to specified obj or
to his copy.

Returns
Modified obj.
classmethod from_diff (src, dst)

Creates JsonPatch instance based on comparing of two document objects. Json patch would be created for
src argument against dst one.

6.9. biothings.utils 189

BioThings SDK

Parameters
e src (dict) — Data source document object.
¢ dst (dict) — Data source document object.

Returns
JsonPatch instance.

>>> src = {'foo': 'bar', 'numbers': [1, 3, 4, 8]}
>>> dst = {'baz': 'qux', 'numbers': [1, 4, 7]}
>>> patch = JsonPatch.from_diff(src, dst)

>>> new = patch.apply(src)

>>> new == dst

True

classmethod from_string(patch_str)

Creates JsonPatch instance from string source.

Parameters
patch_str (str)— JSON patch as raw string.

Returns
JsonPatch instance.

to_string()
Returns patch set as JSON string.

exception biothings.utils. jsonpatch.JsonPatchConflict

Bases: JsonPatchException

Raised if patch could not be applied due to conflict situation such as: - attempt to add object key then it already
exists; - attempt to operate with nonexistence object key; - attempt to insert value to array at position beyond of

it size; - etc.

exception biothings.utils.jsonpatch.JsonPatchException
Bases: Exception
Base Json Patch exception

exception biothings.utils. jsonpatch.JsonPatchTestFailed

Bases: JsonPatchException, AssertionError
A Test operation failed

class biothings.utils. jsonpatch.MoveOperation(operation)

Bases: PatchOperation

Moves an object property or an array element to new location.

apply (0b))
Abstract method that applies patch operation to specified object.

class biothings.utils. jsonpatch.PatchOperation(operation)

Bases: object
A single operation inside a JSON Patch.

apply (ob))
Abstract method that applies patch operation to specified object.

190 Chapter 6

. Quick Start

BioThings SDK

class biothings.utils. jsonpatch.RemoveOperation(operation)
Bases: PatchOperation

Removes an object property or an array element.

apply (obj)
Abstract method that applies patch operation to specified object.

class biothings.utils. jsonpatch.ReplaceOperation(operation)
Bases: PatchOperation

Replaces an object property or an array element by new value.
apply (0b))
Abstract method that applies patch operation to specified object.

class biothings.utils. jsonpatch.TestOperation(operation)
Bases: PatchOperation

Test value by specified location.

apply (obj)
Abstract method that applies patch operation to specified object.

biothings.utils. jsonpatch.apply_patch(doc, patch, in_place=False, ignore_conflicts=False, verify=False)
Apply list of patches to specified json document.

Parameters
¢ doc (dict) — Document object.
* patch (1ist or str)-JSON patch as list of dicts or raw JSON-encoded string.

* in_place (bool) — While True patch will modify target document. By default patch will
be applied to document copy.

» ignore_conflicts (bool) — Ignore JsonConflicts errors

» verify (bool) — works with ignore_conflicts = True, if errors and verify is True (recom-
manded), make sure the resulting objects is the same as the original one. ignore_conflicts
and verify are used to run patches multiple times and get rif of errors when operations can’t
be performed multiple times because the object has already been patched This will force
in_place to False in order the comparison to occur.

Returns
Patched document object.

Return type
dict

r>>> doc = {'foo': 'bar'}

>>> patch = [{'op': 'add', 'path': '/baz', 'value': 'qux'}]

>>> other = apply_patch(doc, patch)

>>> doc is not other

True

>>> other == {'foo': 'bar', 'baz': 'qux'}

True

>>> patch = [{'op': 'add', 'path': '/baz', 'value': 'qux'}]

>>> apply_patch(doc, patch, in_place=True) == {'foo': 'bar', 'baz': 'qux'}
True

(continues on next page)

6.9. biothings.utils 191

BioThings SDK

(continued from previous page)

>>> doc == other
True

biothings.utils. jsonpatch.get_loadjson()
adds the object_pairs_hook parameter to json.load when possible

The “object_pairs_hook” parameter is used to handle duplicate keys when loading a JSON object. This parameter
does not exist in Python 2.6. This methods returns an unmodified json.load for Python 2.6 and a partial function
with object_pairs_hook set to multidict for Python versions that support the parameter.

biothings.utils. jsonpatch.make_patch(src, dst)

Generates patch by comparing of two document objects. Actually is a proxy to JsonPatch. from_diff()
method.

Parameters
* src (dict) — Data source document object.

* dst (dict) — Data source document object.

>>> src = {'foo': 'bar', 'numbers': [1, 3, 4, 8]}
>>> dst = {'baz': 'qux', 'numbers': [1, 4, 7]}
>>> patch = make_patch(src, dst)

>>> new = patch.apply(src)

>>> new == dst

True

L

biothings.utils. jsonpatch.multidict (ordered_pairs)
Convert duplicate keys values to lists.

biothings.utils. jsonpatch.reapply_patch(doc, patch)
Apply or (safely) re-apply patch to doc

6.9.19 biothings.utils.jsonschema

biothings.utils. jsonschema.generate_json_schema(dmap)

biothings.utils. jsonschema.test()

6.9.20 biothings.utils.loggers

class biothings.utils.loggers.Colors (value)

Bases: Enum
An enumeration.

CRITICAL = '"#7b0099'

DEBUG '#alalal’

ERROR = 'danger'

INFO = 'good'

192 Chapter 6. Quick Start

BioThings SDK

NOTSET = '#d6d2d2'
WARNING = 'warning'
class biothings.utils.loggers.EventRecorder (*args, **kwargs)
Bases: StreamHandler
Initialize the handler.
If stream is not specified, sys.stderr is used.

emit (record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

class biothings.utils.loggers.GZipRotator
Bases: object

class biothings.utils.loggers.LookUpList (initlist)

Bases: UserList
find (val)
find_index (val)
class biothings.utils.loggers.Range(start: int | float = 0, end: int | float = inf)
Bases: object
end: int | float = inf
start: int | float = @
class biothings.utils.loggers.ReceiverGroup (initlist=None)
Bases: UserList

class biothings.utils.loggers.Record(range, value)
Bases: NamedTuple

Create new instance of Record(range, value)

range: Range
Alias for field number O

value: Enum
Alias for field number 1

class biothings.utils.loggers.ShellLogger (*args, **kwargs)
Bases: Logger

Custom “levels” for input going to the shell and output coming from it (just for naming)
Initialize the logger with a name and an optional level.

INPUT = 1001

OUTPUT = 1000

6.9. biothings.utils 193

BioThings SDK

input (msg, *args, **kwargs)
output (msg, *args, **kwargs)
class biothings.utils.loggers.SlackHandler (webhook, mentions)
Bases: StreamHandler
Initialize the handler.
If stream is not specified, sys.stderr is used.

emit (record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

static send(webhook, message, level, mentions=())
class biothings.utils.loggers.SlackMentionPolicy(policy)
Bases: object
mentions (level)
class biothings.utils.loggers.SlackMessage
Bases: object

build()
markdown (fext, prefixes=(), suffixes=())
plaintext (zext, color)

class biothings.utils.loggers.Squares (value)
Bases: Enum
An enumeration.

CRITICAL = ':large_purple_square:'

DEBUG

':white_large_square:'
ERROR = ':large_red_square:'

INFO = ':large_blue_square:'
NOTSET = ''

WARNING = ':large_orange_square:'

class biothings.utils.loggers.WSLogHandler (listener)

Bases: StreamHandler

when listener is a bt.hub.api.handlers.ws.LogListener instance, log statements are propagated through existing
websocket

Initialize the handler.

If stream is not specified, sys.stderr is used.

194 Chapter 6. Quick Start

BioThings SDK

emit (record)

Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

payload (record)
class biothings.utils.loggers.WSShellHandler (listener)
Bases: WSLogHandler

when listener is a bt.hub.api.handlers.ws.LogListener instance, log statements are propagated through existing
websocket

Initialize the handler.
If stream is not specified, sys.stderr is used.

payload (record)
biothings.utils.loggers.configurate_file_handler (logger, logfile, formater=None, force=False)

biothings.utils.loggers.create_logger (log_folder, logger_name, level=10)

Create and return a file logger if log_folder is provided. If log_folder is None, no file handler will be created.

biothings.utils.loggers.get_logger (logger_name, log_folder=None, handlers=('console', 'file', 'slack’),
timestamp=None, force=False)

Configure a logger object from logger_name and return (logger, logfile)

biothings.utils.loggers.setup_default_log(default _logger_name, log_folder, level=10)

6.9.21 biothings.utils.manager

class biothings.utils.manager.BaseManager (job_manager, poll_schedule=None)
Bases: object

clean_stale_status()
During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” status
should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden in
subclass.

poll (state, func, col)
Search for source in collection ‘col’ with a pending flag list containing ‘state’ and and call ‘func’ for each
document found (with doc as only param)

class biothings.utils.manager.BaseSourceManager (job_manager, datasource_path='dataload.sources’,
*args, **kwargs)
Bases: BaseManager

Base class to provide source management: discovery, registration Actual launch of tasks must be defined in
subclasses

SOURCE_CLASS = None

6.9. biothings.utils 195

BioThings SDK

filter_class(klass)

Gives opportunity for subclass to check given class and decide to keep it or not in the discovery process.
Returning None means “skip it”.

find_classes (src_module, fail_on_notfound=True)
Given a python module, return a list of classes in this module, matching SOURCE_CLASS (must inherit
from)

register_classes (kiasses)

Register each class in self.register dict. Key will be used to retrieve the source class, create an instance and
run method from it. It must be implemented in subclass as each manager may need to access its sources
differently,based on different keys.

register_source(src, fail_on_notfound=True)

Register a new data source. src can be a module where some classes are defined. It can also be a module
path as a string, or just a source name in which case it will try to find information from default path.

register_sources (sources)
class biothings.utils.manager.BaseStatusRegisterer
Bases: object

property collection
Return collection object used to fetch doc in which we store status
load_doc (key_name, stage)

Find document using key_name and stage, stage being a key within the document matching a specific
process name: Ex: {“_id”:”123”,”snapshot”:’abc”’}

load_doc(*“abc”,”’snapshot™)

will return the document. Note key_name is first used to find the doc by its _id. Ex: with another doc
“_id” : “abc”, “snapshot” : “somethingelse”}

load_doc{*“abc”,”snapshot’)
will return doc with _id="abc”, not “123”

register_status(doc, stage, status, transient=False, init=False, **extra)

class biothings.utils.manager.CLIJobManager (loop=None)
Bases: object
This is the minimal JobManager used in CLI mode to run async jobs, with the compatible methods as JobMan-
ager. It won’t use a dedicated ProcessPool or ThreadPool, and will just run async job directly in the asyncio loop
(which runs jobs in threads by default).
async defer_to_process (pinfo=None, func=None, *args, **kwargs)
keep the same signature as JobManager.defer_to_process. The passed pinfo is ignored. defer_to_process
will still run func in the thread using defer_to_thread method.
async defer_to_thread(pinfo=None, func=None, *args)
keep the same signature as JobManager.defer_to_thread. The passed pinfo is ignored
class biothings.utils.manager.JobManager (loop, process_queue=None, thread_queue=None,

max_memory_usage=None, num_workers=None,
num_threads=None, auto_recycle=True)

Bases: object

196 Chapter 6. Quick Start

BioThings SDK

COLUMNS = ['pid', 'source', 'category', 'step', 'description', 'mem', 'cpu',
'started_at', 'duration']

DATALINE =

'{pid:<10} | {source:<35}|{category:<10} | {step:<20} | {description:<30} | {mem:<10} | {cpu:<6}|{started_at:
HEADER = {'category': 'CATEGORY', 'cpu': 'CPU', 'description': 'DESCRIPTION',

'duration’': 'DURATION', 'mem': 'MEM', 'pid': 'PID', 'source': 'SOURCE',

'started_at': 'STARTED_AT', 'step': 'STEP'}

HEADERLINE =

'{pid: 210} | {source:A35}|{category:A10}|{step:+20}|{description:A30} | {mem:A10}| {cpu:A6}|{started_at:
async check_constraints (pinfo=None)

clean_staled()

async defer_to_process (pinfo=None, func=None, *args, **kwargs)
async defer_to_thread(pinfo=None, func=None, *args)
extract_pending_info(pending)

extract_worker_info(worker)

get_pending_processes()

get_pending_summary (getstr=False)

get_pid_files(child=None)

get_process_summary ()

get_summary (child=None)

get_thread_files()

get_thread_summary ()

property hub_memory

property hub_process

job_info ()

property pchildren

print_pending_info (num, info)

print_workers (workers)

recycle_process_queue()

Replace current process queue with a new one. When processes are used over and over again, memory tends
to grow as python interpreter keeps some data (...). Calling this method will perform a clean shutdown on
current queue, waiting for running processes to terminate, then discard current queue and replace it a new
one.

schedule (crontab, func, *args, **kwargs)

Helper to create a cron job from a callable “func”. *argd, and **kwargs are passed to func. “crontab”
follows aicron notation.

6.9. biothings.utils 197

BioThings SDK

show_pendings (running=None)
stop (force=Fulse, recycling=False, wait=1)

submit (pfunc, schedule=None)

Helper to submit and run tasks. Tasks will run async’ly. pfunc is a functools.partial schedule is a string
representing a cron schedule, task will then be scheduled accordingly.

top (action='"summary")
exception biothings.utils.manager.ManagerError
Bases: Exception

exception biothings.utils.manager.ResourceError
Bases: Exception

exception biothings.utils.manager.ResourceNotFound
Bases: Exception

exception biothings.utils.manager.UnknownResource

Bases: Exception
biothings.utils.manager.do_work (job_id, ptype, pinfo=None, func=None, *args, **kwargs)
biothings.utils.manager.find_process(pid)
biothings.utils.manager.norm(value, maxlen)

just a helper to clean/prepare job’s values printing

biothings.utils.manager.track(func)

6.9.22 biothings.utils.mongo

class biothings.utils.mongo.Collection(*args, **kwargs)
Bases: HandleAutoReconnectMixin, Collection

Get / create a Mongo collection.

Raises TypeError if name is not an instance of str. Raises InvalidName if name is not a valid collec-
tion name. Any additional keyword arguments will be used as options passed to the create command. See
create_collection() for valid options.

If create is True, collation is specified, or any additional keyword arguments are present, a create command
will be sent, using session if specified. Otherwise, a create command will not be sent and the collection will
be created implicitly on first use. The optional session argument is only used for the create command, it is
not associated with the collection afterward.

Parameters
* database: the database to get a collection from
* name: the name of the collection to get
* create (optional): if True, force collection creation even without options being set

* codec_options (optional): An instance of CodecOptions. If None (the default)
database.codec_options is used.

* read_preference (optional): The read preference to use. If None (the default)
database.read_preference is used.

198 Chapter 6. Quick Start

BioThings SDK

* write_concern (optional): An instance of WriteConcern. If None (the default)
database.write_concern is used.

* read_concern (optional): An instance of ReadConcern. If None (the default)
database.read_concern is used.

* collation (optional): An instance of Collation. If a collation is provided, it will be passed
to the create collection command.

* session (optional): a ClientSession that is used with the create collection command

* **kwargs (optional): additional keyword arguments will be passed as options for the create
collection command

Changed in version 4.2: Added the clusteredIndex and encryptedFields parameters.

Changed in version 4.0: Removed the reindex, map_reduce, inline_map_reduce, parallel_scan, ini-
tialize_unordered_bulk_op, initialize_ordered_bulk_op, group, count, insert, save, update, remove,
find_and_modify, and ensure_index methods. See the pymongo4-migration-guide.

Changed in version 3.6: Added session parameter.
Changed in version 3.4: Support the collation option.
Changed in version 3.2: Added the read_concern option.

Changed in version 3.0: Added the codec_options, read_preference, and write_concern options. Removed the
uuid_subtype attribute. Collection no longer returns an instance of Collection for attribute names with
leading underscores. You must use dict-style lookups instead::

collection[‘__my_collection__’]
Not:

collection.__my_collection__
See also:
The MongoDB documentation on collections.
count (_filter=None, **kwargs)
insert(doc_or_docs, *args, **kwargs)
remove (spec_or_id=None, **kwargs)
save(doc, *args, **kwargs)

update (spec, doc, *args, **kwargs)

class biothings.utils.mongo.Database(*args, **kwargs)

Bases: HandleAutoReconnectMixin, Database
Get a database by client and name.
Raises TypeError if name is not an instance of str. Raises InvalidName if name is not a valid database name.
Parameters
e client: A MongoClient instance.
* name: The database name.

* codec_options (optional): An instance of CodecOptions. If None (the default)
client.codec_options is used.

6.9.

biothings.utils 199

https://dochub.mongodb.org/core/collections

BioThings SDK

* read_preference (optional): The read preference to use. If None (the default)
client.read_preference is used.

* write_concern (optional): An instance of WriteConcern. If None (the default)
client.write_concern is used.

* read_concern (optional): An instance of ReadConcern. If None (the default)
client.read_concern is used.

See also:
The MongoDB documentation on databases.

Changed in version 4.0: Removed the eval, system_js, error, last_status, previous_error, reset_error_history,
authenticate, logout, collection_names, current_op, add_user, remove_user, profiling_level, set_profiling_level,
and profiling_info methods. See the pymongo4-migration-guide.

Changed in version 3.2: Added the read_concern option.

Changed in version 3.0: Added the codec_options, read_preference, and write_concern options. Database no
longer returns an instance of Collection for attribute names with leading underscores. You must use dict-style
lookups instead::

db[‘__my_collection__’]
Not:
db.__my_collection__
collection_names (include_system_collections=True, session=None)
class biothings.utils.mongo.DatabaseClient (*args, **kwargs)
Bases: HandleAutoReconnectMixin, MongoClient, IDatabase

Client for a MongoDB instance, a replica set, or a set of mongoses.

Warning: Starting in PyMongo 4.0, directConnection now has a default value of False instead of None.
For more details, see the relevant section of the PyMongo 4.x migration guide: pymongo4-migration-direct-
connection.

The client object is thread-safe and has connection-pooling built in. If an operation fails because of a network
error, ConnectionFailure is raised and the client reconnects in the background. Application code should
handle this exception (recognizing that the operation failed) and then continue to execute.

The host parameter can be a full mongodb URI, in addition to a simple hostname. It can also be a list of hostnames
but no more than one URI. Any port specified in the host string(s) will override the port parameter. For username
and passwords reserved characters like ., °/°, ‘+” and ‘@’ must be percent encoded following RFC 2396:

from urllib.parse import quote_plus

uri = "mongodb://%s:%s@%s" % (
quote_plus(user), quote_plus(password), host)
client = MongoClient(uri)

Unix domain sockets are also supported. The socket path must be percent encoded in the URI:

uri = "mongodb://%s:%s@%s" % (
quote_plus(user), quote_plus(password), quote_plus(socket_path))
client = MongoClient(uri)

200 Chapter 6. Quick Start

https://dochub.mongodb.org/core/databases
http://dochub.mongodb.org/core/connections

BioThings SDK

But not when passed as a simple hostname:

[client = MongoClient('/tmp/mongodb-27017.sock")

Starting with version 3.6, PyMongo supports mongodb+srv:// URIs. The URI must include one, and only one,
hostname. The hostname will be resolved to one or more DNS SRV records which will be used as the seed list for
connecting to the MongoDB deployment. When using SRV URIs, the authSource and replicaSet configuration
options can be specified using TXT records. See the Initial DNS Seedlist Discovery spec for more details. Note
that the use of SRV URIs implicitly enables TLS support. Pass tls=false in the URI to override.

Note: MongoClient creation will block waiting for answers from DNS when mongodb-+srv:// URIs are used.

Note: Starting with version 3.0 the MongoClient constructor no longer blocks while connecting to the server or
servers, and it no longer raises ConnectionFailure if they are unavailable, nor ConfigurationError if the
user’s credentials are wrong. Instead, the constructor returns immediately and launches the connection process
on background threads. You can check if the server is available like this:

from pymongo.errors import ConnectionFailure

client = MongoClient()

try:
The ping command is cheap and does not require auth.
client.admin.command('ping')

except ConnectionFailure:
print("Server not available")

Warning: When using PyMongo in a multiprocessing context, please read multiprocessing first.

Note: Many of the following options can be passed using a MongoDB URI or keyword parameters. If the same
option is passed in a URI and as a keyword parameter the keyword parameter takes precedence.

Parameters

* host (optional): hostname or IP address or Unix domain socket path of a single mongod
or mongos instance to connect to, or a mongodb URI, or a list of hostnames (but no more
than one mongodb URI). If host is an IPv6 literal it must be enclosed in ‘[* and ‘]’ characters
following the RFC2732 URL syntax (e.g. ‘[::1]” for localhost). Multihomed and round robin
DNS addresses are not supported.

port (optional): port number on which to connect

document_class (optional): default class to use for documents returned from queries on this
client

tz_aware (optional): if True, datetime instances returned as values in a document by this
MongoClient will be timezone aware (otherwise they will be naive)

connect (optional): if True (the default), immediately begin connecting to MongoDB in the
background. Otherwise connect on the first operation.

* type_registry (optional): instance of TypeRegistry to enable encoding and decoding of
custom types.

6.9. biothings.utils 201

https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/TXT_record
https://github.com/mongodb/specifications/blob/master/source/initial-dns-seedlist-discovery/initial-dns-seedlist-discovery.rst

BioThings SDK

* datetime_conversion: Specifies how UTC datetimes should be decoded within BSON. Valid
options include ‘datetime_ms’ to return as a DatetimeMS, ‘datetime’ to return as a date-
time.datetime and raising a ValueError for out-of-range values, ‘datetime_auto’ to return
DatetimeMS objects when the underlying datetime is out-of-range and ‘datetime_clamp’
to clamp to the minimum and maximum possible datetimes. Defaults to ‘datetime’. See
handling-out-of-range-datetimes for details.

Other optional parameters can be passed as keyword arguments:

e directConnection (optional): if True, forces this client to
connect directly to the specified MongoDB host as a standalone. If false, the client
connects to the entire replica set of which the given MongoDB host(s) is a part. If this
is True and a mongodb+srv:// URI or a URI containing multiple seeds is provided, an
exception will be raised.

* maxPoolSize (optional): The maximum allowable number of concurrent connections to each
connected server. Requests to a server will block if there are maxPoolSize outstanding con-
nections to the requested server. Defaults to 100. Can be either O or None, in which case
there is no limit on the number of concurrent connections.

» minPoolSize (optional): The minimum required number of concurrent connections that the
pool will maintain to each connected server. Default is 0.

* maxldleTimeMS (optional): The maximum number of milliseconds that a connection can
remain idle in the pool before being removed and replaced. Defaults to None (no limit).

» maxConnecting (optional): The maximum number of connections that each pool can estab-
lish concurrently. Defaults to 2.

* timeoutMS: (integer or None) Controls how long (in milliseconds) the driver will wait when
executing an operation (including retry attempts) before raising a timeout error. ® or None
means no timeout.

* socketTimeoutMS: (integer or None) Controls how long (in milliseconds) the driver will wait
for aresponse after sending an ordinary (non-monitoring) database operation before conclud-
ing that a network error has occurred. ® or None means no timeout. Defaults to None (no
timeout).

* connectTimeoutMS: (integer or None) Controls how long (in milliseconds) the driver will
wait during server monitoring when connecting a new socket to a server before concluding
the server is unavailable. ® or None means no timeout. Defaults to 20000 (20 seconds).

* server_selector: (callable or None) Optional, user-provided function that augments server
selection rules. The function should accept as an argument a list of ServerDescription
objects and return a list of server descriptions that should be considered suitable for the
desired operation.

* serverSelectionTimeoutMS: (integer) Controls how long (in milliseconds) the driver will wait
to find an available, appropriate server to carry out a database operation; while it is waiting,
multiple server monitoring operations may be carried out, each controlled by connectTime-
outMS. Defaults to 30000 (30 seconds).

* waitQueueTimeoutMS: (integer or None) How long (in milliseconds) a thread will wait for a
socket from the pool if the pool has no free sockets. Defaults to None (no timeout).

* heartbeatFrequencyMS: (optional) The number of milliseconds between periodic server
checks, or None to accept the default frequency of 10 seconds.

202 Chapter 6. Quick Start

BioThings SDK

* serverMonitoringMode: (optional) The server monitoring mode to use. Valid values are the

strings: “auto”, “stream”, “poll”. Defaults to “auto”.

* appname: (string or None) The name of the application that created this MongoClient in-
stance. The server will log this value upon establishing each connection. It is also recorded
in the slow query log and profile collections.

* driver: (pair or None) A driver implemented on top of PyMongo can pass a DriverInfo to
add its name, version, and platform to the message printed in the server log when establishing
a connection.

* event_listeners: a list or tuple of event listeners. See monitoring for details.

o retryWrites: (boolean) Whether supported write operations executed within this Mongo-
Client will be retried once after a network error. Defaults to True. The supported write
operations are:

— bulk_write(), as long as UpdateMany or DeleteMany are not included.
— delete_one()

— insert_one()

— insert_many()

— replace_one()

— update_one()

— find_one_and_delete()

— find_one_and_replace()

— find_one_and_update()

Unsupported write operations include, but are not limited to, aggregate () using the $out
pipeline operator and any operation with an unacknowledged write concern (e.g. {w:
0})). See https://github.com/mongodb/specifications/blob/master/source/retryable-writes/
retryable-writes.rst

* retryReads: (boolean) Whether supported read operations executed within this MongoClient
will be retried once after a network error. Defaults to True. The supported read opera-
tions are: find(), find_one(), aggregate() without $out, distinct(), count(),

estimated_document_count(), count_documents(), pymongo.collection.
Collection.watch(), list_indexes(), pymongo.database.Database.watch(),
list_collections(), pymongo .mongo_client.MongoClient.watch(), and

list_databases().

Unsupported read operations include, but are not limited to command() and any getMore
operation on a cursor.

Enabling retryable reads makes applications more resilient to transient errors such as network
failures, database upgrades, and replica set failovers. For an exact definition of which errors
trigger a retry, see the retryable reads specification.

* compressors: Comma separated list of compressors for wire protocol compression. The list
is used to negotiate a compressor with the server. Currently supported options are “snappy”,
“zlib” and “zstd”. Support for snappy requires the python-snappy package. zlib support
requires the Python standard library zlib module. zstd requires the zstandard package. By
default no compression is used. Compression support must also be enabled on the server.
MongoDB 3.6+ supports snappy and zlib compression. MongoDB 4.2+ adds support for
zstd. See network-compression-example for details.

6.9. biothings.utils 203

https://github.com/mongodb/specifications/blob/master/source/retryable-writes/retryable-writes.rst
https://github.com/mongodb/specifications/blob/master/source/retryable-writes/retryable-writes.rst
https://github.com/mongodb/specifications/blob/master/source/retryable-reads/retryable-reads.rst
https://pypi.org/project/python-snappy/
https://pypi.org/project/zstandard/

BioThings SDK

* zlibCompressionLevel: (int) The zlib compression level to use when zlib is used as the wire
protocol compressor. Supported values are -1 through 9. -1 tells the zlib library to use its
default compression level (usually 6). 0 means no compression. 1 is best speed. 9 is best
compression. Defaults to -1.

* uuidRepresentation: The BSON representation to use when encoding from and decoding

LEENTE)

to instances of UUID. Valid values are the strings: “standard”, “pythonLegacy”, “javale-
gacy”, “csharpLegacy”, and “unspecified” (the default). New applications should consider
setting this to “standard” for cross language compatibility. See handling-uuid-data-example

for details.

* unicode_decode_error_handler: The error handler to apply when a Unicode-related error
occurs during BSON decoding that would otherwise raise UnicodeDecodeError. Valid
options include ‘strict’, ‘replace’, ‘backslashreplace’, ‘surrogateescape’, and ‘ignore’. De-
faults to ‘strict’.

* srvServiceName: (string) The SRV service name to use for “mongodb+srv://” URIs. De-
faults to “mongodb”. Use it like so:

[MongoClient("mongodb+srv ://example.com/?srvServiceName=customname")]

* srvMaxHosts: (int) limits the number of mongos-like hosts a client will connect to. More
specifically, when a “mongodb+srv://” connection string resolves to more than srvMaxHosts
number of hosts, the client will randomly choose an srvMaxHosts sized subset of hosts.

Write Concern options:
(Only set if passed. No default values.)

* w: (integer or string) If this is a replica set, write operations will block until they have been
replicated to the specified number or tagged set of servers. w=<int> always includes the
replica set primary (e.g. w=3 means write to the primary and wait until replicated to two
secondaries). Passing w=0 disables write acknowledgement and all other write concern
options.

» wTimeoutMS: (integer) Used in conjunction with w. Specify a value in milliseconds to con-
trol how long to wait for write propagation to complete. If replication does not complete
in the given timeframe, a timeout exception is raised. Passing wTimeoutMS=0 will cause
write operations to wait indefinitely.

* journal: If True block until write operations have been committed to the journal. Cannot
be used in combination with fsync. Write operations will fail with an exception if this option
is used when the server is running without journaling.

* fsync: If True and the server is running without journaling, blocks until the server has synced
all data files to disk. If the server is running with journaling, this acts the same as the j
option, blocking until write operations have been committed to the journal. Cannot be used
in combination with j.

Replica set keyword arguments for connecting with a replica set - either directly or via a
mongos:

* replicaSet: (string or None) The name of the replica set to connect to. The driver will verify
that all servers it connects to match this name. Implies that the hosts specified are a seed list
and the driver should attempt to find all members of the set. Defaults to None.

204 Chapter 6. Quick Start

BioThings SDK

Read Preference:

* readPreference: The replica set read preference for this client. One of primary,
primaryPreferred, secondary, secondaryPreferred, or nearest. Defaults to
primary.

* readPreferenceTags: Specifies a tag set as a comma-separated list of colon-separated key-
value pairs. For example dc:ny,rack: 1. Defaults to None.

» maxStalenessSeconds: (integer) The maximum estimated length of time a replica set sec-
ondary can fall behind the primary in replication before it will no longer be selected for
operations. Defaults to -1, meaning no maximum. If maxStalenessSeconds is set, it must
be a positive integer greater than or equal to 90 seconds.

See also:

/examples/server_selection

Authentication:

* username: A string.
* password: A string.

Although username and password must be percent-escaped in a MongoDB URI, they must
not be percent-escaped when passed as parameters. In this example, both the space and slash
special characters are passed as-is:

[MongoClient (username="user name'", password="pass/word")]

* authSource: The database to authenticate on. Defaults to the database specified in the URI,
if provided, or to “admin”.

* authMechanism: See MECHANISNS for options. If no mechanism is specified, PyMongo auto-
matically SCRAM-SHA-1 when connected to MongoDB 3.6 and negotiates the mechanism
to use (SCRAM-SHA-1 or SCRAM-SHA-256) when connected to MongoDB 4.0+.

* authMechanismProperties: Used to specify authentication mechanism spe-
cific options. To specify the service name for GSSAPI authentica-
tion pass authMechanismProperties="SERVICE_NAME:<service name>’.

To specify the session token for MONGODB-AWS authentication pass
authMechanismProperties="'AWS_SESSION_TOKEN:<session token>"'.
See also:

/examples/authentication

TLS/SSL configuration:

* tls: (boolean) If True, create the connection to the server using transport layer security.
Defaults to False.

* tlsnsecure: (boolean) Specify whether TLS constraints should be relaxed as much as pos-
sible. Setting t1sInsecure=True implies t1sAllowInvalidCertificates=True and

6.9. biothings.utils 205

BioThings SDK

tlsAllowInvalidHostnames=True. Defaults to False. Think very carefully before set-
ting this to True as it dramatically reduces the security of TLS.

* tlsAllowlnvalidCertificates: (boolean) If True, continues the TLS handshake regardless of
the outcome of the certificate verification process. If this is False, and a value is not provided
for t1sCAFile, PyMongo will attempt to load system provided CA certificates. If the python
version in use does not support loading system CA certificates then the t1sCAFile parameter
must point to a file of CA certificates. t1sAllowInvalidCertificates=False implies
tls=True. Defaults to False. Think very carefully before setting this to True as that could
make your application vulnerable to on-path attackers.

* tisAllowInvalidHostnames: (boolean) If True, disables TLS hostname verification.
tlsAllowInvalidHostnames=False implies t1s=True. Defaults to False. Think very
carefully before setting this to True as that could make your application vulnerable to on-path
attackers.

* tIsCAFile: A file containing a single or a bundle of “certification authority” certificates,
which are used to validate certificates passed from the other end of the connection. Implies
tls=True. Defaults to None.

o tlsCertificateKeyFile: A file containing the client certificate and private key. Implies
tls=True. Defaults to None.

* tIsCRLFile: A file containing a PEM or DER formatted certificate revocation list. Implies
tls=True. Defaults to None.

* tlsCertificateKeyFilePassword: The password or passphrase for decrypting the private key
in tlsCertificateKeyFile. Only necessary if the private key is encrypted. Defaults to
None.

* tlsDisableOCSPEndpointCheck: (boolean) If True, disables certificate revoca-
tion status checking via the OCSP responder specified on the server certificate.
t1sDisableOCSPEndpointCheck=False implies t1s=True. Defaults to False.

* ssl: (boolean) Alias for tls.

Read Concern options:
(If not set explicitly, this will use the server default)

* readConcernLevel: (string) The read concern level specifies the level of isolation for read
operations. For example, a read operation using a read concern level of majority will only
return data that has been written to a majority of nodes. If the level is left unspecified, the
server default will be used.

Client side encryption options:
(If not set explicitly, client side encryption will not be enabled.)

* auto_encryption_opts: A AutoEncryptionOpts which configures this client to au-
tomatically encrypt collection commands and automatically decrypt results. See
automatic-client-side-encryption for an example. If a MongoClient is configured with
auto_encryption_opts and a non-None maxPoolSize, a separate internal MongoClient
is created if any of the following are true:

— A key_vault_client is not passed to AutoEncryptionOpts

— bypass_auto_encrpytion=False is passed to AutoEncryptionOpts

206

Chapter 6. Quick Start

BioThings SDK

Stable API options:
(If not set explicitly, Stable API will not be enabled.)

» server_api: A ServerApi which configures this client to use Stable API. See versioned-api-
ref for details.
See also:
The MongoDB documentation on connections.
Changed in version 4.5: Added the serverMonitoringMode keyword argument.
Changed in version 4.2: Added the timeoutMS keyword argument.
Changed in version 4.0:

¢ Removed the fsync, unlock, is_locked, database_names, and close_cursor methods. See the pymongo4-
migration-guide.

* Removed the waitQueueMultiple and socketKeepAlive keyword arguments.
* The default for uuidRepresentation was changed from pythonLegacy to unspecified.
¢ Added the srvServiceName, maxConnecting, and srvMaxHosts URI and keyword arguments.

Changed in version 3.12: Added the server_api keyword argument. The following keyword arguments were
deprecated:

e ssl_certfile and ssl_keyfile were deprecated in favor of tlsCertificateKeyFile.
Changed in version 3.11: Added the following keyword arguments and URI options:

¢ tlsDisableOCSPEndpointCheck

e directConnection

Changed in version 3.9: Added the retryReads keyword argument and URI option. Added the t1sInsecure
keyword argument and URI option. The following keyword arguments and URI options were deprecated:

» wTimeout was deprecated in favor of wTimeoutMs.

* j was deprecated in favor of journal.

* ssl_cert_reqs was deprecated in favor of t1sAllowInvalidCertificates.

¢ ssl_match_hostname was deprecated in favor of t1sAllowInvalidHostnames.

* ssl_ca_certs was deprecated in favor of t1sCAFile.

* ssl_certfile was deprecated in favor of tlsCertificateKeyFile.

e ssl_crlfile was deprecated in favor of t1sCRLFile.

* ssl_pem_passphrase was deprecated in favor of tlsCertificateKeyFilePassword.
Changed in version 3.9: retryWrites now defaults to True.

Changed in version 3.8: Added the server_selector keyword argument. Added the type_registry keyword
argument.

Changed in version 3.7: Added the driver keyword argument.

Changed in version 3.6: Added support for mongodb+srv:// URIs. Added the retryWrites keyword argument
and URI option.

6.9. biothings.utils 207

https://dochub.mongodb.org/core/connections

BioThings SDK

Changed in version 3.5: Add username and password options. Document the authSource, authMechanism,
and authlMechanismProperties options. Deprecated the socketKeepAlive keyword argument and URI op-
tion. socketKeepAlive now defaults to True.

Changed in version 3.0: MongoClient is now the one and only client class for a standalone server, mongos, or
replica set. It includes the functionality that had been split into MongoReplicaSetClient: it can connect to a
replica set, discover all its members, and monitor the set for stepdowns, elections, and reconfigs.

The MongoClient constructor no longer blocks while connecting to the server or servers, and it no longer raises
ConnectionFailure if they are unavailable, nor ConfigurationError if the user’s credentials are wrong.
Instead, the constructor returns immediately and launches the connection process on background threads.

Therefore the alive method is removed since it no longer provides meaningful information; even if the client is
disconnected, it may discover a server in time to fulfill the next operation.

In PyMongo 2.x, MongoClient accepted a list of standalone MongoDB servers and used the first it could connect
to:

[Mongoclient(['hostl.com: 27017', 'host2.com:27017'])

J

A list of multiple standalones is no longer supported; if multiple servers are listed they must be members of the
same replica set, or mongoses in the same sharded cluster.

The behavior for a list of mongoses is changed from “high availability” to “load balancing”. Before, the client
connected to the lowest-latency mongos in the list, and used it until a network error prompted it to re-evaluate
all mongoses’ latencies and reconnect to one of them. In PyMongo 3, the client monitors its network latency
to all the mongoses continuously, and distributes operations evenly among those with the lowest latency. See
mongos-load-balancing for more information.

The connect option is added.

The start_request, in_request, and end_request methods are removed, as well as the
auto_start_request option.

The copy_database method is removed, see the copy_database examples for alternatives.
The MongoClient.disconnect () method is removed; it was a synonym for close().

MongoClient no longer returns an instance of Database for attribute names with leading underscores. You
must use dict-style lookups instead:

[client ['__my_database__']

Not:

[client .__my_database__

class biothings.utils.mongo.DummyCollection

Bases: dotdict

count ()

drop ()

class biothings.utils.mongo.DummyDatabase

Bases: dotdict

collection_names()

208

Chapter 6. Quick Start

BioThings SDK

class biothings.utils.mongo.HandleAutoReconnectMixin(*args, **kwargs)
Bases: object

This mixin will decor any non-hidden method with handle_autoreconnect decorator

exception biothings.utils.mongo.MaxRetryAutoReconnectException(message: str =", errors:
Mapping/[str, Any] |
Sequence[Any] | None = None)

Bases: AutoReconnect

Raised when we reach maximum retry to connect to Mongo server
biothings.utils.mongo.check_document_size (doc)

Return True if doc isn’t too large for mongo DB

biothings.utils.mongo.doc_feeder (collection, step=1000, s=None, e=None, inbatch=Fulse, query=None,
batch_callback=None, fields=None, logger=<module 'logging’ from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py">,
session_refresh_interval=5)

An iterator returning docs in a collection, with batch query.

Additional filter query can be passed via query, e.g., doc_feeder(collection, query={‘taxid’: {‘$in’: [9606,
10090, 10116]}}) batch_callback is a callback function as fn(index, t), called after every batch. fields is an
optional parameter to restrict the fields to return.

session_refresh_interval is 5 minutes by default. We call refreshSessions command every 5 minutes to

keep a session alive, otherwise the session
and all cursors attached (explicitly or implicitly) to the session will time out after idling for

30 minutes, even if we have no_cursor_timeout set True for a cursor. See https://www.
mongodb.com/docs/manual/reference/command/refreshSessions/ and https://www.mongodb.com/docs/
manual/reference/method/cursor.noCursorTimeout/#session-idle-timeout-overrides-nocursortimeout

biothings.utils.mongo.get_api (conn=None)
biothings.utils.mongo.get_cache_filename (col_name)
biothings.utils.mongo.get_cmd(conn=None)
biothings.utils.mongo.get_conn(server, port)
biothings.utils.mongo.get_data_plugin(conn=None)
biothings.utils.mongo.get_event (conn=None)
biothings.utils.mongo.get_hub_config(conn=None)
biothings.utils.mongo.get_hub_db_conn()
biothings.utils.mongo.get_last_command (conn=None)

biothings.utils.mongo.get_previous_collection(new_id)

Given ‘new_id’, an _id from src_build, as the “new” collection, automatically select an “old” collection. By
default, src_build’s documents will be sorted according to their name (_id) and old collection is the one just
before new_id.

Note: because there can be more than one build config used, the actual build config name is first

determined using new_id collection name,
then the find().sort() is done on collections containing that build config name.

6.9. biothings.utils 209

https://www.mongodb.com/docs/manual/reference/command/refreshSessions/
https://www.mongodb.com/docs/manual/reference/command/refreshSessions/
https://www.mongodb.com/docs/manual/reference/method/cursor.noCursorTimeout/#session-idle-timeout-overrides-nocursortimeout
https://www.mongodb.com/docs/manual/reference/method/cursor.noCursorTimeout/#session-idle-timeout-overrides-nocursortimeout

BioThings SDK

biothings.utils.mongo.get_source_fullname (col_name)

Assuming col_name is a collection created from an upload process, find the main source & sub_source associated.

biothings.utils.mongo.get_source_fullnames (col_names)
biothings.utils.mongo.get_src_build(conn=None)
biothings.utils.mongo.get_src_build_config(conn=None)
biothings.utils.mongo.get_src_conn()
biothings.utils.mongo.get_src_db(conn=None)
biothings.utils.mongo.get_src_dump (conn=None)
biothings.utils.mongo.get_src_master (conn=None)
biothings.utils.mongo.get_target_conn()
biothings.utils.mongo.get_target_db(conn=None)
biothings.utils.mongo.get_target_master (conn=None)

biothings.utils.mongo.handle_autoreconnect (cls_instance, func)

After upgrading the pymongo package from 3.12 to 4.x, the “AutoReconnect: connection pool paused” problem
appears quite often. It is not clear that the problem happens with our codebase, maybe a pymongo’s problem.

This function is an attempt to handle the AutoReconnect exception, without modifying our codebase. When the
exception is raised, we just wait for some time, then retry. If the error still happens after MAX_RETRY, it must
be a connection-related problem. We should stop retrying and raise error.

Ref: https://github.com/newgene/biothings.api/pull/40#issuecomment- 1185334545

biothings.utils.mongo.id_feeder (col, batch_size=1000, build_cache=True, logger=<module 'logging' from
Yhome/docs/.asdf/installs/python/3.10.13/lib/python3.10/logging/__init__.py'>,
force_use=Fualse, force_build=False, validate_only=False)

Return an iterator for all _ids in collection “col”.
Search for a valid cache file if available, if not, return a doc_feeder for that collection. Valid cache is a cache file

that is newer than the collection.

LLENNYS

“db” can be “target” or “src”. “build_cache” True will build a cache file as _ids are fetched, if no cache file was
found. “force_use” True will use any existing cache file and won’t check whether it’s valid of not. “force_build”
True will build a new cache even if current one exists and is valid. *“validate_only” will directly return [] if the
cache is valid (convenient way to check if the cache is valid).

biothings.utils.mongo.invalidate_cache(col_name, col_type='src")

biothings.utils.mongo.requires_config(func)

210 Chapter 6. Quick Start

https://github.com/newgene/biothings.api/pull/40#issuecomment-1185334545

BioThings SDK

6.9.23 biothings.utils.parallel

Utils for running parallel jobs.

biothings.utils.parallel.collection_partition(src_collection_list, step=100000)
This function is deprecated, not used anywhere

biothings.utils.parallel.run_jobs_on_ipythoncluster (worker, task_list,
shutdown_ipengines_after_done=False)

biothings.utils.parallel.run_jobs_on_parallel (worker, task_list, executor_args=None)
This method will run multiple workers to handle the task_list, in a process pool, which is an easy way to run and
manage processes.

Parameters: - worker: a callable, which will be apply for an item of the task_list - task_list: a iterable, which con-
tains task data should be processed. - executor_args: should be valid parameters for initializing a ProcessPoolEx-
ecutor.

6.9.24 biothings.utils.parallel_mp

class biothings.utils.parallel_mp.ErrorHandler (errpath, chunk_num)
Bases: object

handle (exception)

class biothings.utils.parallel_mp.ParallelResult(agg_function, agg_function_init)
Bases: object

aggregate(curr)
biothings.utils.parallel_mp.agg_by_append(prev, curr)
biothings.utils.parallel_mp.agg_by_sum(prev, curr)

biothings.utils.parallel_mp.run_parallel_on_ids_dir (fun, ids_dir, backend_options=None,
agg._function=<function agg_by_append>,
agg_function_init=[], outpath=None,
num_workers=2, mget_chunk_size=10000,
ignore_None=True, error_path=None,
**query_kwargs)

This function will run function fun on chunks defined by the files in ids_dir.
All parameters are fed to run_parallel_on_iterable, except:

Params ids_dir
Directory containing only files with ids, one per line. The number of files defines the number of
chunks.

biothings.utils.parallel mp.run_parallel_on_ids_file(fun, ids_file, backend_options=None,
agg_function=<function agg_by_append>,
agg._function_init=[], chunk_size=1000000,
num_workers=2, outpath=None,
mget_chunk_size=10000, ignore_None=True,
error_path=None, **query_kwargs)

Implementation of run_parallel_on_iterable, where iterable comes from the lines of a file.

All parameters are fed to run_on_ids_iterable, except:

6.9. biothings.utils 211

BioThings SDK

Parameters
ids_file — Path to file with ids, one per line.

biothings.utils.parallel_mp.run_parallel_on_iterable (fun, iterable, backend_options=None,

This function will run a user function on all documents in a backend database in parallel using multiprocess-

agg_function=<function agg_by_append>,
agg_function_init=None,
chunk_size=1000000, num_workers=2,
outpath=None, mget_chunk_size=10000,
ignore_None=True, error_path=None,
**query_kwargs)

ing.Pool. The overview of the process looks like this:

Chunk (into chunks of size “chunk_size”) items in iterable, and run the following script on each chunk using a

multiprocessing.Pool object with “num_workers” processes:

For each document in list of ids in this chunk (documents retrived in chunks of
“mget_chunk_size”):
Run function “fun” with parameters (doc, chunk_num, f <file handle only passed if “outpath” is
not None>), and aggregate the result with the current results using function “agg_function”.

Parameters

fun — The function to run on all documents. If outpath is NOT specified, fun must accept
two parameters: (doc, chunk_num), where doc is the backend document, and chunk_num
is essentially a unique process id. If outpath IS specified, an additional open file handle
(correctly tagged with the current chunk’s chunk_num) will also be passed to fun, and thus
it must accept three parameters: (doc, chunk_num, f)

iterable — Iterable of ids.

backend_options — An instance of biothings.utils.backend.DocBackendOptions. This
contains the options necessary to instantiate the correct backend class (ES, mongo, etc).

agg_function - This function aggregates the return value of each run of function fun. It
should take 2 parameters: (prev, curr), where prev is the previous aggregated result, and
curr is the output of the current function run. It should return some value that represents the
aggregation of the previous aggregated results with the output of the current function.

agg_function_init — Initialization value for the aggregated result.
chunk_size — Length of the ids list sent to each chunk.

num_workers — Number of processes that consume chunks in parallel. https://docs.python.
org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool

outpath — Base path for output files. Because function fun can be run many times in
parallel, each chunk is sequentially numbered, and the output file name for any chunk
is outpath_{chunk_num}, e.g., if outpath is out, all output files will be of the form:
/path/to/cwd/out_1, /path/to/cwd/out_2, etc.

error_path — Base path for error files. If included, exceptions inside each chunk thread
will be printed to these files.

mget_chunk_size — The size of each mget chunk inside each chunk thread. In each thread,
the ids list is consumed by passing chunks to amget_by_ids function. This parameter controls
the size of each mget.

ignore_None - If set, then falsy values will not be aggregated (0, [], None, etc) in the
aggregation step. Default True.

212

Chapter 6. Quick Start

https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool

BioThings SDK

All other parameters are fed to the backend query.

biothings.utils.parallel_mp.run_parallel_on_query (fun, backend_options=None, query=None,
agg._function=<function agg_by_append>,
agg_function_init=[], chunk_size=1000000,
num_workers=2, outpath=None,
mget_chunk_size=10000, ignore_None=True,
error_path=None, full_doc=False,
**query_kwargs)

Implementation of run_parallel_on_ids_iterable, where the ids iterable comes from the result of a query on the
specified backend.

All parameters are fed to run_parallel_on_ids_iterable, except:
Parameters
* query — ids come from results of this query run on backend, default: “match_all”

e full_doc - If True, a list of documents is passed to each subprocess, rather than ids that are
looked up later. Should be faster? Unknown how this works with very large query sets...

6.9.25 biothings.utils.parsers

biothings.utils.parsers.docker_source_info_parser (url)

Parameters
url - file url include docker connection string format:
docker://CONNECTION_NAME?image=DOCKER_IMAGE&tag=TAG&dump_command="python
run.py” &path=/path/to/file the CONNECTION_NAME must be defined in the biothings Hub

config. example: docker://CONNECTION_NAME?image=docker_image&tag=docker_tag&dump_command="python
run.py” &path=/path/to/file docker://CONNECTION_NAME?image=docker_image&tag=docker_tag&dump_commanc
run.py”’ &path=/path/to/file docker://CONNECTION_NAME?image=docker_image&tag=docker_tag&dump_command
run.py” &path=/path/to/file docker”//CONNECTION_NAME ?image=docker_imageé&tag=docker_tag&dump_comman

run.py” &path=/path/to/file
Returns

biothings.utils.parsers.json_array_parser (patterns: Iterable[str] | None = None) — Callable[[str],
Generator|[dict, None, None]]

Create JSON Array Parser given filename patterns

For use with manifest.json based plugins. The data comes in a JSON that is an JSON array, containing multiple
documents.

Parameters
patterns — glob-compatible patterns for filenames, like .json, data.json

Returns
parser_func

biothings.utils.parsers.ndjson_parser (patterns: Iterable[str] | None = None) — Callable[[str],
Generator[dict, None, None]]

Create NDJSON Parser given filename patterns
For use with manifest.json based plugins. Caveat: Only handles valid NDJSON (no extra newlines, UTFS, etc.)

Parameters
patterns — glob-compatible patterns for filenames, like .ndjson, data.ndjson

6.9. biothings.utils 213

BioThings SDK

Returns

Generator that takes in a data_folder and returns documents from
NDIJSON files that matches the filename patterns

Return type
parser_func

6.9.26 biothings.utils.redis

class biothings.utils.redis.RedisClient (connection_params)
Bases: object

check ()
client = None
classmethod get_client (params)
get_db (db_name=None)
Return a redict client instance from a database name or database number (if db_name is an integer)

initialize(deep=False)

Careful: this may delete data. Prepare Redis instance to work with biothings hub: - database 0: this db is
used to store a mapping between

database index and database name (so a database can be accessed by name). This method will
flush this db and prepare it.

* any other databases will be flushed if deep is True, making the redis server fully dedicated to

property mapdb

pick_db(O

Return a database number, preferably not used (db doesn’t exist). If no database available (all are used),
will be one and flush it...

exception biothings.utils.redis.RedisClientError
Bases: Exception

6.9.27 biothings.utils.serializer

class biothings.utils.serializer.URL(seq)
Bases: UserString

remove (param="format")
biothings.utils.serializer. json_dumps(data, indent=False, sort_keys=False)

biothings.utils.serializer. json_loads(json_str: bytes | str) — Any
Load a JSON string or bytes using orjson

biothings.utils.serializer.load_json(json_str: bytes | str) — Any
Load a JSON string or bytes using orjson

214 Chapter 6. Quick Start

BioThings SDK

biothings.utils.serializer.orjson_default (o)

The default function passed to orjson to serialize non-serializable objects

biothings.utils.

biothings.utils.

deprecated

biothings.utils.
biothings.utils.

biothings.utils.

serializer

serializer

serializer

serializer

serializer

.to_json(data, indent=False, sort_keys=False)

.to_json_0(data)

.to_json_£file(data, fobj, indent=False, sort_keys=False)
. to_msgpack (data)

.to_yaml (data, stream=None, Dumper=<class 'yaml.dumper.SafeDumper'>,
default_flow_style=False)

6.9.28 biothings.utils.shelve

6.9.29 biothings.utils.sqlite3

class biothings.utils.sqlite3.Collection(colname, db)

Bases: object

bulk_write(docs, *args, **kwargs)

count ()

property database

drop(

find (*args, **kwargs)

find_one(*args, **kwargs)

findv2 (*args, **kwargs)

This is a new version of find() that uses json feature of sqlite3, will replace find in the future

get_conn()

insert (docs, *args, **kwargs)

insert_one(doc)

property name

remove (query)

rename (new_name, dropTarget=False)

replace_one (query, doc, upsert=False)

save (doc)

update (query, what, upsert=False)

update_one (query, what, upsert=False)

6.9. biothings.utils

215

BioThings SDK

class biothings.utils.sqlite3.Cursor (inserted_count)
Bases: object

class biothings.utils.sqlite3.Database(db_folder, name=None)
Bases: IDatabase

CONFIG = <ConfigurationWrapper over <module 'config' from
' /home/docs/checkouts/readthedocs.org/user_builds/biothingsapi/checkouts/0.12.x/
biothings/hub/default_config.py'>>

property address

Returns sufficient information so a connection to a database can be created. Information can be a dictionary,
object, etc... and depends on the actual backend

collection_names()
Return a list of all collections (or tables) found in this database

create_collection(colname)

Create a table/colleciton named colname. If backend is using a schema-based database (ie. SQL), backend
should enforce the schema with at least field ““_id” as the primary key (as a string).

create_if needed(zable)
get_conn()

class biothings.utils.sqlite3.DatabaseClient
Bases: IDatabase

biothings.utils.sqlite3.get_api()
biothings.utils.sqlite3.get_cmd()
biothings.utils.sqlite3.get_data_plugin()
biothings.utils.sqlite3.get_event()
biothings.utils.sqlite3.get_hub_config()
biothings.utils.sqlite3.get_hub_db_conn()
biothings.utils.sqlite3.get_last_command()

biothings.utils.sqlite3.get_source_fullname (col_name)

Assuming col_name is a collection created from an upload process, find the main source & sub_source associated.

biothings.utils.sqlite3.get_src_build()
biothings.utils.sqlite3.get_src_build_config()
biothings.utils.sqlite3.get_src_conn()
biothings.utils.sqlite3.get_src_db()
biothings.utils.sqlite3.get_src_dump()
biothings.utils.sqlite3.get_src_master()

biothings.utils.sqlite3.requires_config(func)

216 Chapter 6. Quick Start

BioThings SDK

6.9.30 biothings.utils.version

Functions to return versions of things.

biothings.utils.version.check_new_version(folder, max_commits=10)

Given a folder pointing to a Git repo, return a dict containing info about remote commits not gpplied yet to the

repo, or empty dict if nothing new.
biothings.utils.version.get_biothings_commit()

Gets the biothings commit information.
biothings.utils.version.get_python_exec_version()

return Python version
biothings.utils.version.get_python_version()

Get a list of python packages installed and their versions.
biothings.utils.version.get_repository_information(app_dir=None)

Get the repository information for the local repository, if it exists.
biothings.utils.version.get_software_info (app_dir=None)

return current application info
biothings.utils.version.get_source_code_info(src_file)

Given a path to a source code, try to find information about repository, revision, URL pointing to that file, etc...
Return None if nothing can be determined. Tricky cases:

« src_file could refer to another repo, within current repo (namely a remote data plugin, cloned within the
api’s plugins folder

* src_file could point to a folder, when for instance a dataplugin is analized. This is because we can’t point
to an uploader file since it’s dynamically generated

biothings.utils.version.get_version(folder)

return revision of a git folder

biothings.utils.version.set_versions(config, app_folder)

Propagate versions (git branch name) in config module. Also set app and biothings folder paths (though not
exposed as a config param since they are lower-cased, see biothings.__init__.py, regex PARAM_PAT)

6.10 biothings.hub

class biothings.hub.HubCommands
Bases: OrderedDict

class biothings.hub.HubSSHServer
Bases: SSHServer

PASSWORDS = {}

SHELL = None

6.10. biothings.hub 217

BioThings SDK

begin_auth (username)

Authentication has been requested by the client

This method will be called when authentication is attempted for the specified user. Applications should
use this method to prepare whatever state they need to complete the authentication, such as loading in the
set of authorized keys for that user. If no authentication is required for this user, this method should return
False to cause the authentication to immediately succeed. Otherwise, it should return True to indicate that
authentication should proceed.

If blocking operations need to be performed to prepare the state needed to complete the authentication, this
method may be defined as a coroutine.

Parameters
username (str) — The name of the user being authenticated

Returns
A bool indicating whether authentication is required

connection_lost (exc)

Called when a connection is lost or closed

This method is called when a connection is closed. If the connection is shut down cleanly, exc will be None.
Otherwise, it will be an exception explaining the reason for the disconnect.

connection_made (connection)

Called when a connection is made

This method is called when a new TCP connection is accepted. The conn parameter should be stored if
needed for later use.

Parameters
conn (SSHServerConnection) — The connection which was successfully opened

password_auth_supported()

Return whether or not password authentication is supported

This method should return True if password authentication is supported. Applications wishing to support
it must have this method return 7rue and implement validate_password() to return whether or not the
password provided by the client is valid for the user being authenticated.

By default, this method returns False indicating that password authentication is not supported.

Returns
A bool indicating if password authentication is supported or not

session_requested()

Handle an incoming session request

This method is called when a session open request is received from the client, indicating it wishes to open
a channel to be used for running a shell, executing a command, or connecting to a subsystem. If the appli-
cation wishes to accept the session, it must override this method to return either an SSHServerSession
object to use to process the data received on the channel or a tuple consisting of an SSHServerChannel
object created with create_server_channel and an SSHServerSession, if the application wishes to
pass non-default arguments when creating the channel.

If blocking operations need to be performed before the session can be created, a coroutine which returns an
SSHServerSession object can be returned instead of the session iself. This can be either returned directly
or as a part of a tuple with an SSHServerChannel object.

To reject this request, this method should return False to send back a “Session refused” response or raise a
ChannelOpenError exception with the reason for the failure.

218

Chapter 6. Quick Start

BioThings SDK

The details of what type of session the client wants to start will be delivered to methods on the
SSHServerSession object which is returned, along with other information such as environment variables,
terminal type, size, and modes.

By default, all session requests are rejected.
Returns
One of the following:
* An SSHServerSession object or a coroutine which returns an SSHServerSession
* A tuple consisting of an SSHServerChannel and the above

* A callable or coroutine handler function which takes AsyncSSH stream objects for stdin,
stdout, and stderr as arguments

* A tuple consisting of an SSHServerChannel and the above
o False to refuse the request

Raises
ChannelOpenError if the session shouldn’t be accepted

validate_password (username, password)

Return whether password is valid for this user

This method should return True if the specified password is a valid password for the user being authenti-
cated. It must be overridden by applications wishing to support password authentication.

If the password provided is valid but expired, this method may raise PasswordChangeRequired to re-
quest that the client provide a new password before authentication is allowed to complete. In this case, the
application must override change_password() to handle the password change request.

This method may be called multiple times with different passwords provided by the client. Appli-
cations may wish to limit the number of attempts which are allowed. This can be done by having
password_auth_supported() begin returning False after the maximum number of attempts is exceeded.

If blocking operations need to be performed to determine the validity of the password, this method may be
defined as a coroutine.

By default, this method returns False for all passwords.
Parameters
* username (str) — The user being authenticated
¢ password (str) — The password sent by the client

Returns
A bool indicating if the specified password is valid for the user being authenticated

Raises
PasswordChangeRequired if the password provided is expired and needs to be changed

class biothings.hub.HubSSHServerSession(name, shell)
Bases: SSHServerSession

break_received(msec)
The client has sent a break

This method is called when the client requests that the server perform a break operation on the terminal. If
the break is performed, this method should return True. Otherwise, it should return False.

By default, this method returns False indicating that no break was performed.

6.10. biothings.hub 219

BioThings SDK

Parameters
msec (int) — The duration of the break in milliseconds

Returns
A bool to indicate if the break operation was performed or not
connection_made (chan)

Called when a channel is opened successfully

This method is called when a channel is opened successfully. The channel parameter should be stored if
needed for later use.

Parameters
chan (SSHServerChannel) — The channel which was successfully opened.
data_received(data, datatype)
Called when data is received on the channel
This method is called when data is received on the channel. If an encoding was specified when the channel

was created, the data will be delivered as a string after decoding with the requested encoding. Otherwise,
the data will be delivered as bytes.

Parameters
e data (str or bytes) — The data received on the channel
¢ datatype — The extended data type of the data, from extended data types

eof_received()
Called when EOF is received on the channel
This method is called when an end-of-file indication is received on the channel, after which no more data
will be received. If this method returns True, the channel remains half open and data may still be sent.
Otherwise, the channel is automatically closed after this method returns. This is the default behavior for
classes derived directly from SSHSession, but not when using the higher-level streams API. Because input

is buffered in that case, streaming sessions enable half-open channels to allow applications to respond to
input read after an end-of-file indication is received.

eval_lines(lines)
exec_requested(command)
The client has requested to execute a command

This method should be implemented by the application to perform whatever processing is required when a
client makes a request to execute a command. It should return True to accept the request, or False to reject
it.

If the application returns True, the session_started() method will be called once the channel is fully
open. No output should be sent until this method is called.

By default this method returns False to reject all requests.

Parameters
command (str) — The command the client has requested to execute

Returns
A bool indicating if the exec request was allowed or not

session_started()

Called when the session is started

220 Chapter 6. Quick Start

BioThings SDK

This method is called when a session has started up. For client and server sessions, this will be called once
a shell, exec, or subsystem request has been successfully completed. For TCP and UNIX domain socket
sessions, it will be called immediately after the connection is opened.

shell_requested()
The client has requested a shell
This method should be implemented by the application to perform whatever processing is required when a

client makes a request to open an interactive shell. It should return True to accept the request, or False to
reject it.

If the application returns True, the session_started() method will be called once the channel is fully
open. No output should be sent until this method is called.

By default this method returns False to reject all requests.

Returns
A bool indicating if the shell request was allowed or not
soft_eof_received()
The client has sent a soft EOF

This method is called by the line editor when the client send a soft EOF (Ctrl-D on an empty input line).

By default, soft EOF will trigger an EOF to an outstanding read call but still allow additional input to be
received from the client after that.

class biothings.hub.HubServer (source_list, features=None, name='BioThings Hub',
managers_custom_args=None, api_config=None, reloader_config=None,
dataupload_config=None, websocket_config=None, autohub_config=None)

Bases: object

Helper to setup and instantiate common managers usually used in a hub (eg. dumper manager, uploader manager,
etc...) “source_list” is either:

* alist of string corresponding to paths to datasources modules
* a package containing sub-folders with datasources modules

Specific managers can be retrieved adjusting “features” parameter, where each feature corresponds to one or more
managers. Parameter defaults to all possible available. Managers are configured/init in the same order as the list,
so if amanager (eg. job_manager) is required by all others, it must be the first in the list. “managers_custom_args”
is an optional dict used to pass specific arguments while init managers:

managers_custom_args={“upload” : {*“poll_schedule” : “*/5 * * * #}}

will set poll schedule to check upload every Smin (instead of default 10s) “reloader_config”, “datau-

pload_config”, “autohub_config” and “websocket_config” can be used to customize reloader, dataupload and
websocket. If None, default config is used. If explicitely False, feature is deactivated.

DEFAULT_API_CONFIG = {}

DEFAULT_AUTOHUB_CONFIG = {'es_host': None, 'indexer_factory': None,
'validator_class': None, 'version_urls': []}

DEFAULT_DATAUPLOAD_CONFIG = {'upload_root': '.biothings_hub/archive/dataupload'}

DEFAULT_FEATURES = ['config', 'job', 'dump', 'upload', 'dataplugin', 'source',
'build', 'auto_archive', 'diff', 'index', 'snapshot', 'auto_snapshot_cleaner’,
'release’, 'inspect', 'sync', 'api', 'terminal', 'reloader', 'dataupload', 'ws',
'readonly’', 'upgrade', 'autohub', 'hooks']

6.10. biothings.hub 221

BioThings SDK

DEFAULT_MANAGERS_ARGS = {'upload': {'poll_schedule': '* * * * * */19'}}

DEFAULT_RELOADER_CONFIG = {'folders': None, 'managers': ['source_manager',
'assistant_manager'], 'reload_func': None}

DEFAULT_WEBSOCKET_CONFIG = {}

add_api_endpoint (endpoint_name, command_name, method, **kwargs)

Add an API endpoint to expose command named “command_name” using HTTP method “method”.
**kwargs are used to specify more arguments for EndpointDefinition

before_configure()

Hook triggered before configure(), used eg. to adjust features list

before_start()

clean_features (features)

Sanitize (ie. remove duplicates) features

configure()

configure_api_endpoints()
configure_api_manager()
configure_auto_archive_manager ()
configure_auto_snapshot_cleaner_manager ()

configure_autohub_feature()

See bt.hub.standalone. AutoHubFeature
configure_build_manager()
configure_commands ()

Configure hub commands according to available managers

configure_config_feature()
configure_dataplugin_manager ()
configure_dataupload_feature()
configure_diff_manager()
configure_dump_manager ()

configure_extra_commands ()

Same as configure_commands() but commands are not exposed publicly in the shell (they are shortcuts or
commands for API endpoints, supporting commands, etc...)

configure_hooks_feature()

Ingest user-defined commands into hub namespace, giving access to all pre-defined commands (commands,
extra_commands). This method prepare the hooks but the ingestion is done later when all commands are
defined

configure_index_manager()

configure_inspect_manager()

222 Chapter 6. Quick Start

BioThings SDK

configure_ioloop()
configure_job_manager ()
configure_managers()

configure_readonly_api_endpoints()

Assuming read-write API endpoints have previously been defined (self.api_endpoints set) extract com-
mands and their endpoint definitions only when method is GET. That is, for any given API definition hon-
oring REST principle for HTTP verbs, generate endpoints only for which actions are read-only actions.

configure_readonly_feature()

Define then expose read-only Hub API endpoints so Hub can be accessed without any risk of modifying
data

configure_release_manager()
configure_reloader_feature()
configure_remaining_features()
configure_snapshot_manager()
configure_source_manager ()
configure_sync_manager ()
configure_terminal_feature()

configure_upgrade_feature()

Allows a Hub to check for new versions (new commits to apply on running branch) and apply them on
current code base

configure_upload_manager ()
configure_ws_feature()
export_command_documents (filepath)
get_websocket_urls()
ingest_hooks()

mixargs (feat, params=None)
process_hook_file (hook_file)

quick_index (datasource_name, doc_type, indexer_env, subsource=None, index_name=None, **kwargs)

Intention for datasource developers to quickly create an index to test their datasources. Automatically create
temporary build config, build collection Then call the index method with the temporary build collection’s
name

start()
class biothings.hub.JobRenderer
Bases: object

cron_and_strdelta_info(job)

6.10. biothings.hub 223

BioThings SDK

render (job)
render_cron(c)
render_func(f)
render_lambda (/)
render_method (m)
render_partial (p)
render_strdelta(job)

biothings.hub.get_schedule (loop)

try to render job in a human-readable way. ..

async biothings.hub.start_ssh_server (loop, name, passwords, keys=['bin/ssh_host_key'], shell=None,
host=", port=8022)

biothings.hub. status (managers)

Return a global hub status (number or sources, documents, etc...) according to available managers

6.10.1 Modules

biothings.hub.api

class biothings.hub.api.EndpointDefinition
Bases: dict

biothings.hub.api.create_handlers(shell, command_defs)
biothings.hub.api.generate_api_routes(shell, commands)
biothings.hub.api.generate_endpoint_for_callable (name, command, method, force_bodyargs)
biothings.hub.api.generate_endpoint_£for_composite_command (name, command, method)
biothings.hub.api.generate_endpoint_for_display(name, command, method)
biothings.hub.api.generate_handler (shell, name, command_defs)

biothings.hub.api.start_api(app, port, check=True, wait=5, retry=>5, settings=None)

biothings.hub.api.managers

class biothings.hub.api.manager.APIManager (log_folder=None, *args, **kwargs)

Bases: BaseManager

create_api (api_id, es_host, index, doc_type, port, description=None, **kwargs)
delete_api (api_id)
get_apis()

register_status(api_id, status, **extra)

224 Chapter 6. Quick Start

BioThings SDK

restore_running_apis()
If some APIs were running but the hub stopped, re-start APIs as hub restarts

setup()
setup_log()
start_api (api_id)
stop_api (api_id)

exception biothings.hub.api.manager.APIManagerException
Bases: Exception

biothings.hub.api.handlers.base

class biothings.hub.api.handlers.base.BaseHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: DefaultHandler
initialize (managers, **kwargs)

class biothings.hub.api.handlers.base.DefaultHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: RequestHandler
options (*args, **kwargs)
set_default_headers()
Override this to set HTTP headers at the beginning of the request.

For example, this is the place to set a custom Server header. Note that setting such headers in the normal
flow of request processing may not do what you want, since headers may be reset during error handling.

write(result)
Writes the given chunk to the output buffer.

To write the output to the network, use the flush() method below.

If the given chunk is a dictionary, we write it as JSON and set the Content-Type of the response to be
application/json. (if you want to send JSON as a different Content-Type, call set_header after
callingwrite()).

Note that lists are not converted to JSON because of a potential cross-site security vulnerability. All
JSON output should be wrapped in a dictionary. More details at http://haacked.com/archive/2009/06/25/
json-hijacking.aspx/ and https://github.com/facebook/tornado/issues/1009

write_error (status_code, **kwargs)

Override to implement custom error pages.
write_error may call write, render, set_header, etc to produce output as usual.

If this error was caused by an uncaught exception (including HTTPError), an exc_info triple will be avail-
able as kwargs["exc_info"]. Note that this exception may not be the “current” exception for purposes
of methods like sys.exc_info() or traceback. format_exc.

6.10. biothings.hub 225

http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
http://haacked.com/archive/2009/06/25/json-hijacking.aspx/
https://github.com/facebook/tornado/issues/1009

BioThings SDK

class biothings.hub.api.handlers.base.GenericHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: DefaultHandler
delete(*args, **kwargs)

get (*args, **kwargs)

head (*args, **kwargs)
initialize(shell, **kwargs)
post (*args, **kwargs)

put (*args, **kwargs)

class biothings.hub.api.handlers.base.RootHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: DefaultHandler
async get()

initialize (features, hub_name=None, **kwargs)

biothings.hub.api.handlers.log

class biothings.hub.api.handlers.log.DefaultCORSHeaderMixin

Bases: object

set_default_headers()

class biothings.hub.api.handlers.log.HubLogDirHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: Defaul tCORSHeaderMixin, RequestHandler

get (filename)
initialize(path)

class biothings.hub.api.handlers.log.HubLogFileHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: Defaul tCORSHeaderMixin, StaticFileHandler

async get(path: str, include_body: bool = True) — None

If request path is a gz file, we will uncompress it first, then return get with the uncompress file path
options (*args, **kwargs)

biothings.hub.api.handlers.log.get_log_content (file_path, **kwargs)

226 Chapter 6. Quick Start

BioThings SDK

biothings.hub.api.handlers.shell

class biothings.hub.api.handlers.shell.ShellHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: GenericHandler

initialize(shell, shellog, **kwargs)

put()

biothings.hub.api.handlers.upload

class biothings.hub.api.handlers.upload.UploadHandler (application: Application, request:
HTTPServerRequest, **kwargs: Any)

Bases: GenericHandler

data_received(chunk)
Implement this method to handle streamed request data.

Requires the .stream_request_body decorator.
May be a coroutine for flow control.
initialize (upload_root, **kwargs)
parse_head()
post(src_name)
prepare()
Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless of the request method.

Asynchronous support: Use async def or decorate this method with .gen.coroutine to make it asyn-
chronous. If this method returns an Awaitable execution will not proceed until the Awaitable is done.

New in version 3.1: Asynchronous support.

biothings.hub.api.handlers.ws

class biothings.hub.api.handlers.ws.HubDBListener

Bases: ChangeListener
Get events from Hub DB and propagate them through the websocket instance
read(event)

class biothings.hub.api.handlers.ws.LogListener (*args, **kwargs)
Bases: ChangeListener
read(event)

class biothings.hub.api.handlers.ws.ShellListener (*args, **kwargs)

Bases: LogListener

6.10. biothings.hub 227

BioThings SDK

class biothings.hub.api.handlers.ws.WebSocketConnection(session, listeners)

Bases: SockJSConnection
Listen to Hub DB through a listener object, and publish events to any client connected

SockJSConnection.__init__() takes only a session as argument, and there’s no way to pass custom settings. In
order to use that class, we need to use partial to partially init the instance with ‘listeners’ and let the rest use the
‘session’

parameter:
pconn = partial(WebSocketConnection,listeners=listeners) ws_router =
sockjs.tornado.SockJSRouter(pconn,”/path”)

clients = {}
on_close()
Default on_close handler.

on_message (message)
Default on_message handler. Must be overridden in your application

on_open (info)
Default on_open() handler.

Override when you need to do some initialization or request validation. If you return False, connection will
be rejected.

You can also throw Tornado HTTPError to close connection.

request
ConnectionInfo object which contains caller IP address, query string parameters and cookies asso-
ciated with this request (if any).

publish(message)

biothings.hub.autoupdate

biothings.hub.autoupdate.dumper

class biothings.hub.autoupdate.dumper.BiothingsDumper (*args, **kwargs)

Bases: HTTPDumper

This dumper is used to maintain a BioThings API up-to-date. BioThings data is available as either as an Elastic-
Search snapshot when full update, and a collection of diff files for incremental updates. It will either download
incremental updates and apply diff, or trigger an ElasticSearch restore if the latest version is a full update. This
dumper can also be configured with precedence rules: when a full and a incremental update is available, rules
can set so full is preferably used over incremental (size can also be considered when selecting the preferred way).
AUTO_UPLOAD = False

AWS_ACCESS_KEY_ID = None

AWS_SECRET_ACCESS_KEY = None

SRC_NAME = None

SRC_ROOT_FOLDER = None

228

Chapter 6. Quick Start

BioThings SDK

TARGET_BACKEND = None

VERSION_URL = None

anonymous_download (remoteurl, localfile, headers=None)
auth_download (bucket_name, key, localfile, headers=None)
property base_url

check_compat (build_meta)

choose_best_version(versions)
Out of all compatible versions, choose the best: 1. choose incremental vs. full according to preferences 2.
version must be the highest (most up-to-date)

compare_remote_local (remote_version, local_version, orig_remote_version, orig_local_version)

create_todump_list (force=Fualse, version="latest', url=None)

Fill self.to_dump list with dict(“remote”:remote_path,”’local:local_path) elements. This is the todo list for
the dumper. It’s a good place to check whether needs to be downloaded. If “force’ is True though, all files
will be considered for download

download (remoteurl, localfile, headers=None)

Download “remotefile’ to local location defined by ‘localfile’ Return relevant information about remotefile
(depends on the actual client)

find_update_path (version, backend_version=None)

Explore available versions and find the path to update the hub up to “version”, starting from given back-

end_version (typically current version found in ES index). If backend_version is None (typically no index

yet), a complete path will be returned, from the last compatible “full” release up-to the latest “diff” update.

Returned is a list of dict, where each dict is a build metadata element containing information about each

update (see versions.json), the order of the list describes the order the updates should be performed.
async get_target_backend()

Example: [{

3

‘host’: ‘esb.mygene.info:9200°, ‘index’: ‘mygene_allspecies_20200823_ufkwdv79’, ‘in-
dex_alias’: ‘mygene_allspecies’, ‘version’: ‘20200906’ ‘count’: 38729977

}

async info(version='latest")

Display version information (release note, etc...) for given version {
“info”: ... “release_note™: ...

}

load_remote_json (url)
post_dump (*args, **kwargs)
Placeholder to add a custom process once the whole resource has been dumped. Optional.

prepare_client()

Depending on presence of credentials, inject authentication in client.get()

6.10. biothings.hub 229

BioThings SDK

remote_is_better (remotefile, localfile)

Determine if remote is better

Override if necessary.
async reset_target_backend()
property target_backend
async versions()

Display all available versions. Example: [{

‘build_version’: 20171003’, ‘url’: ‘https://biothings-releases.s3.amazonaws.com:443/mygene.
info/20171003.json’, ‘release_date’: ‘2017-10-06T11:58:39.749357°, ‘require_version’: None,
‘target_version’: ‘20171003°, ‘type’: ‘full’

b

biothings.hub.autoupdate.uploader

class biothings.hub.autoupdate.uploader.BiothingsUploader (*args, **kwargs)

Bases: BaseSourceUploader

db_conn_info is a database connection info tuple (host,port) to fetch/store information about the datasource’s
state.

AUTO_PURGE_INDEX = False

SYNCER_FUNC = None

TARGET_BACKEND = None

async apply_diff (build_meta, job_manager, **kwargs)
clean_archived_collections()

get_snapshot_repository_config(build_meta)

Return (name,config) tuple from build_meta, where name is the repo name, and config is the repo config

async load(*args, **kwargs)

Main resource load process, reads data from doc_c using chunk sized as batch_size. steps defines the
different processes used to laod the resource: - “data” : will store actual data into single collections - “post”
: will perform post data load operations - “master” : will register the master document in src_master

name = None

async restore_snapshot (build_meta, job_manager, **kwargs)
property syncer_func

property target_backend

async update_data(batch_size, job_manager, **kwargs)

Look in data_folder and either restore a snapshot to ES or apply diff to current ES index

230

Chapter 6. Quick Start

https://biothings-releases.s3.amazonaws.com:443/mygene.info/20171003.json
https://biothings-releases.s3.amazonaws.com:443/mygene.info/20171003.json

BioThings SDK

biothings.hub.databuild

biothings.hub.databuild.backend

Backend for storing merged genedoc after building. Support MongoDB, ES, CouchDB

class biothings.hub.databuild.backend.LinkTargetDocMongoBackend (*args, **kwargs)
Bases: TargetDocBackend

This backend type act as a dummy target backend, the data is actually stored in source database. It means only
one datasource can be linked to that target backend, as a consequence, when this backend is used in a merge,
there’s no actual data merge. This is useful when “merging/indexing” only one datasource, where the merge step
is just a duplication of datasource data.

drop)
get_backend_url ()
Return backend URL (see create_backend() for formats)
name = 'link’
property target_collection
class biothings.hub.databuild.backend.ShardedTargetDocMongoBackend (*args, **kwargs)
Bases: TargetDocMongoBackend
target_collection is a pymongo collection object.

prepare()
if needed, add extra preparation steps here.

class biothings.hub.databuild.backend.SourceDocBackendBase (build_config, build, master, dump,
sources)

Bases: DocBackendBase

get_build_configuration(build_name)
get_src_master_docs()
get_src_metadata()
validate_sources (sources=None)

class biothings.hub.databuild.backend.SourceDocMongoBackend (build_config, build, master, dump,
sources)

Bases: SourceDocBackendBase

get_build_configuration(build_name)
get_src_master_docs()

get_src_metadata()

Return source versions which have been previously accessed wit this backend object or all source versions if
none were accessed. Accessing means going through __getitem___ (the usual way) and allows to auto-keep
track of sources of interest, thus returning versions only for those.

validate_sources (sources=None)

6.10. biothings.hub 231

BioThings SDK

class biothings.hub.databuild.backend.TargetDocBackend(*args, **kwargs)
Bases: DocBackendBase

generate_target_name (build_config_name)

get_backend_url ()
Return backend URL (see create_backend() for formats)

post_merge()

set_target_name (target_name, build_name=None)

Create/prepare a target backend, either strictly named “target_name” or named derived from “build_name”
(for temporary backends)

property target_name

class biothings.hub.databuild.backend.TargetDocMongoBackend (*args, **kwargs)

Bases: TargetDocBackend, DocMongoBackend
target_collection is a pymongo collection object.

set_target_name (farget_name=None, build_name=None)
Create/prepare a target backend, either strictly named “target_name” or named derived from “build_name”
(for temporary backends)

biothings.hub.databuild.backend.create_backend(db_col_names, name_only=False, follow_ref=False,
**kwargs)

Guess what’s inside ‘db_col_names’ and return the corresponding backend. - It could be a string (will first check
for an src_build doc to check

a backend_url field, if nothing there, will lookup a mongo collection in target database)

99 99

* or a tuple(*“target|src”,’col_name”)

¢ or a (“mongodb://user:pass@host”,”’db”,”col_name”) URL

99 99

e or a (“es_host:port”,”index_name”,”doc_type”)

If name_only is true, just return the name uniquely identifying the collection or index URI connection.

biothings.hub.databuild.backend.generate_folder (root_folder, old_db_col_names, new_db_col_names)

biothings.hub.databuild.backend.merge_src_build_metadata(build_docs)

Merge metadata from src_build documents. A list of docs should be passed, the order is important: the Ist
element has the less precedence, the last the most. It means that, when needed, some values from documents on
the “left” of the list may be overridden by one on the right. Ex: build_version field Ideally, build docs shouldn’t
have any sources in common to prevent any unexpected conflicts. ..

biothings.hub.databuild.buildconfig

A build config contains autobuild configs and other information.
TODO: not all features already supported in the code

For exmaple: {

LI IY3 9, < 99, < ELT3

“_id”: “mynews”, “name”: “mynews”, “doc_type”: “news”, “sources”: [“mynews’], “root”: [“mynews”],
“builder_class”: “biothings.hub.databuild.builder.DataBuilder”, “autobuild”: { ... }, “autopublish™: { ...
}, “build_version”: “%Y %om%d%H%M”

232 Chapter 6. Quick Start

BioThings SDK

}
Autobuild: - build - diff/snapshot

Autopublish: - release note - publish
Autorelease: - release

class biothings.hub.databuild.buildconfig.AutoBuildConfig(confdict)

Bases: object
Parse automation configurations after each steps following ‘build’.
Example: {

“autobuild”: {
“schedule”: “0 8 * * 77, // Make a build every 08:00 on Sunday. “type”: “diff”, / Auto create a

“diff” w/previous version.
// The other option is “snapshot”.
“env”’: “local”, // ES env to create an index and snapshot,
/I not required when type above is diff. // Setting the env also implies auto snapshot. // It
could be in addition to auto diff. // Also accept (indexer_env, snapshot_env).
}, “autopublish”: {

“type”: ‘“‘snapshot”, // Auto publish new snapshots for new builds.
/I The type field can also be ‘dift".

“env”: “prod”, // The release environment to publish snapshot.
/1 Or the release environment to publish diff. // This field is required for either type.

“note”: True // If we should publish with a release note
// TODO not implemented yet

}, “autorelease”: {

‘“schedule”: <0 0 * * 17, // Make a release every Monday at midnight
/1 (if there’s a new published version.)

“type”: “full”, // Only auto install full releases.
// The release type can also be ‘incremental’.

}

} The terms below are used interchangeably.

BUILD_TYPES = ('diff', 'snapshot')

RELEASE_TO_BUILD = {'full': 'snapshot', 'incremental': 'diff'}
RELEASE_TYPES = ('incremental', 'full')

export()

should_diff new_build()

should_install_new_diff()

should_install_new_release()
Install the latest version regardless of update type/path.

6.10. biothings.hub

233

BioThings SDK

should_install_new_snapshot ()
should_publish_new_diff()
should_publish_new_snapshot ()

should_snapshot_new_build()

exception biothings.hub.databuild.buildconfig.AutoBuildConfigError

Bases: Exception

biothings.hub.databuild.buildconfig.test()

biothings.hub.databuild.builder

exception biothings.hub.databuild.builder.BuilderException

Bases: Exception

class biothings.hub.databuild.builder.BuilderManager (source_backend_factory=None,

target_backend_factory=None,
builder_class=None, poll_schedule=None,
*args, **kwargs)
Bases: BaseManager
BuilderManager deals with the different builders used to merge datasources. It is connected to src_build() via
sync(), where it grabs build information and register builder classes, ready to be instantiate when triggering
builds. source_backend_factory can be a optional factory function (like a partial) that builder can call without any
argument to generate a SourceBackend. Same for target_backend_factory for the TargetBackend. builder_class
if given will be used as the actual Builder class used for the merge and will be passed same arguments as the base
DataBuilder. It can also be a list of classes, in which case the default used one is the first, when it’s necessary to
define multiple builders.
archive_merge (merge_name)
Delete merged collections and associated metadata

build_config_info()

build_info (id=None, conf_name=None, fields=None, only_archived=Fualse, status=None)

Return build information given an build _id, or all builds if _id is None. “fields” can be passed to select
which fields to return or not (mongo notation for projections), if None return everything except:

* “mapping” (too long)

If id is None, more are filtered:

* “sources” and some of “build_config”

only_archived=True will return archived merges only status: will return only successful/failed builds. Can
be “success” or “failed”

clean_stale_status()

During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” status
should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden in
subclass.

234

Chapter 6. Quick Start

BioThings SDK

clean_temp_collections (build_name, date=None, prefix="")

Delete all target collections created from builder named “build_name” at given date (or any date is none
given — carefull. ..). Date is a string (YYYYMMDD or regex) Common collection name prefix can also be
specified if needed.

configure()
Sync with src_build_config and register all build config

create_build_configuration(name, doc_type, sources, roots=None, builder_class=None, params=None,
archived=False)

delete_build_configuration(name)
delete_merge (merge_name)
Delete merged collections and associated metadata

delete_merged_data(merge_name)
find_builder_classes()

Find all available build class:
1. classes passed during manager init (build_class) (that includes the default builder)

2. all subclassing DataBuilder in:

a. biothings.hub.databuilder.*

b. hub.databuilder.* (app-specific)

get_builder (col_name)

get_builder_class (build_config_name)
builder class can be specified different way (in order): 1. within the build_config document (so, per con-
figuration) 2. or defined in the builder manager (so, per manager) 3. or default to DataBuilder

get_query_for_list_merge(only_archived, status=None)
list_merge (build_config=None, only_archived=False)

list_sources (build_name)

List all registered sources used to trigger a build named ‘build_name’

merge (build_name, sources=None, target_name=None, **kwargs)
Trigger a merge for build named ‘build_name’. Optional list of sources can be passed (one single or a list).

target_name is the target collection name used to store to merge data. If none, each call will generate a
unique target_name.

poll()

Check “whatsnew()” to idenfity builds which could be automatically built, if {“autobuild” : {...}} is part
of the build configuration. “autobuild” contains a dict with “schedule” (aiocron/crontab format), so each
build configuration can have a different polling schedule.

register_builder (build_name)

resolve_builder_class (klass)

93 99

Resolve class/partial definition to (obj,”’type”, ”mod.class”’) where names (class name, module, docstring,
etc...) can directly be accessed whether it’s a standard class or not

6.10. biothings.hub 235

BioThings SDK

save_mapping (name, mapping=None, dest="build', mode="mapping")
setup_log()

property source_backend

property target_backend

trigger_merge(doc)

update_build_configuration(name, doc_type, sources, roots=None, builder_class=None, params=None,
archived=False)

upsert_build_conf (name, doc_type, sources, roots, builder_class, params, archived)

whatsnew (build_name=None, old=None)

Return datasources which have changed since last time (last time is datasource information from metadata,
either from given old src_build doc name, or the latest found if old=None)

class biothings.hub.databuild.builder.DataBuilder (build_name, source_backend, target_backend,

log_folder, doc_root_key="root', mappers=None,
default_mapper_class=<class 'bioth-
ings.hub.databuild.mapper. TransparentMapper'>,
sources=None, target_name=None, **kwargs)

Bases: object
Generic data builder.

property build_config
check_ready (force=False)
clean_old_collections()

document_cleaner (src_name, *args, **kwargs)

Return a function taking a document as argument, cleaning the doc as needed, and returning that doc. If
no function is needed, None. Note: the returned function must be pickleable, careful with lambdas and
closures.

generate_document_query (src_name)

get_build_version()

Generate an arbitrary major build version. Default is using a timestamp (YYMMDD) ‘. char isn’t allowed
in build version as it’s reserved for minor versions

get_custom_metadata(sources, job_manager)

If more metadata is required, this method can be overridden and should return a dict. Existing metadata
dict will be update with that one before storage.

get_mapper_for_source (src_name, init=True)
get_mapping (sources)
Merge mappings from src_master

get_pinfo()

Return dict containing information about the current process (used to report in the hub)

236

Chapter 6. Quick Start

BioThings SDK

get_predicates()

Return a list of predicates (functions returning true/false, as in math logic) which instructs/dictates if job
manager should start a job (process/thread)

get_root_document_sources()

get_stats(sources, job_manager)

Return a dictionnary of metadata for this build. It’s usually app-specific and this method may be overridden
as needed. By default though, the total number of documents in the merged collection is stored (key “total”)

Return dictionary will be merged with any existing metadata in src_build collection. This behavior can be
changed by setting a special key within metadata dict: {*__REPLACE__": True} will... replace existing
metadata with the one returned here.

“job_manager” is passed in case parallelization is needed. Be aware that this method is already running in
a dedicated thread, in order to use job_manager, the following code must be used at the very beginning of
its implementation: asyncio.set_event_loop(job_manager.loop)

get_target_name()
init_mapper (mapper_name)
init_state()
keep_archive = 10
property logger

merge (sources=None, target_name=None, force=False, ids=None, steps=('merge’, 'post’, 'metadata’),
job_manager=None, *args, **kwargs)

Merge given sources into a collection named target_name. If sources argument is omitted, all sources
defined for this merger will be merged together, according to what is defined insrc_build_config. If tar-
get_name is not defined, a unique name will be generated.

Optional parameters:
* force=True will bypass any safety check
* ids: list of _ids to merge, specifically. If None, all documents are merged.
* steps:
— merge: actual merge step, create merged documents and store them
— post: once merge, run optional post-merge process

— metadata: generate and store metadata (depends on merger, usually specifies the

amount)
of merged data, source versions, etc...)

merge_order (other_sources)
Optionally we can override this method to customize the order in which sources should be merged. Default
as sorted by name.

async merge_source (src_name, batch_size=100000, ids=None, job_manager=None)
async merge_sources (source_names, steps=('merge’, 'post’), batch_size=100000, ids=None,
Jjob_manager=None)

Merge resources from given source_names or from build config. Identify root document sources from the
list to first process them. ids can a be list of documents to be merged in particular.

6.10. biothings.hub 237

BioThings SDK

post_merge (source_names, batch_size, job_manager)
prepare (state=None)

register_status (status, transient=False, init=False, **extra)

Register current build status. A build status is a record in src_build The key used in this dict the tar-
get_name. Then, any operation acting on this target_name is registered in a “jobs” list.

resolve_sources (sources)

Source can be a string that may contain regex chars. It’s usefull when you have plenty of sub-collections
prefixed with a source name. For instance, given a source named “blah” stored in as many collections as
chromosomes, insteand of passing each name as “blah_1", “blah_2", etc... “blah_.*” can be specified in
build_config. This method resolves potential regexed source name into real, existing collection names

setup (sources=None, target_name=None)
setup_log()

property source_backend
store_metadata(res, sources, job_manager)
property target_backend

unprepare()

reset anything that’s not pickable (so self can be pickled) return what’s been reset as a dict, so self can be
restored once pickled

update_src_meta_stats()

class biothings.hub.databuild.builder.LinkDataBuilder (build_name, source_backend, target_backend,

*args, **kwargs)
Bases: DataBuilder

LinkDataBuilder creates a link to the original datasource to be merged, without actually copying the data (merged
collection remains empty). This builder is only valid when using only one datasource (thus no real merge) is
declared in the list of sources to be merged, and is useful to prevent data duplication between the datasource itself
and the resulting merged collection.

async merge_source (src_name, *args, **kwargs)

exception biothings.hub.databuild.builder.ResumeException

Bases: Exception

biothings.hub.databuild.builder.fix_batch_duplicates(docs, fail_if struct_is_different=False)

Remove duplicates from docs based on _id. If _id’s the same but structure is different (not real “dupli-
cates”, but different documents with the same _ids), merge docs all together (dict.update) or raise an error if
fail_if struct_is_different.

biothings.hub.databuild.builder.merger_worker (col_name, dest_name, ids, mapper, cleaner, upsert,

merger, batch_num, merger_kwargs=None)

biothings.hub.databuild.builder.pending (build_name, action_name)

biothings.hub.databuild.builder.set_pending_to_build(conf name=None)

238

Chapter 6. Quick Start

BioThings SDK

biothings.hub.databuild.differ

class biothings.hub.databuild.differ.BaseDiffer (diff func, job_manager, log_folder)
Bases: object

diff (old_db_col_names, new_db_col_names, batch_size=100000, steps=('content', 'mapping’, 'reduce’,
'post’), mode=None, exclude=None)

wrapper over diff_cols() coroutine, return a task

async diff_cols(old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=None)

Compare new with old collections and produce diff files. Root keys can be excluded from comparison with
“exclude” parameter

* db_col_names can be:
1. a colleciton name (as a string) asusming they are in the target database.

2. tuple with 2 elements, the first one is then either “source” or “target” to respectively specify src
or target database, and the second element is the collection name.

3. tuple with 3 elements (URI,db,collection), looking like: (“mon-
godb://user:pass@host”,’dbname”,’collection”), allowing to specify any connection on
any server

steps: - ‘content’ will perform diff on actual content.
* ‘mapping’ will perform diff on ES mappings (if target collection involved)
* ‘reduce’ will merge diff files, trying to avoid having many small files
* ‘post’ is a hook to do stuff once everything is merged (override method post_diff_cols)

mode: ‘purge’ will remove any existing files for this comparison while ‘resume’ will happily ignore
existing data and to whatever it’s requested (like running steps="post” on existing diff folder...)

diff_type = None

get_metadata()

get_pinfo()
Return dict containing information about the current process (used to report in the hub)

get_predicates()

post_diff_cols(old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=None)
Post diff process hook. This coroutine will in a dedicated thread

register_status (status, transient=False, init=False, **extra)

setup_log(old=None, new=None)

class biothings.hub.databuild.differ.ColdHotDiffer (diff func, job_manager, log_folder)
Bases: BaseDiffer

async diff_cols(old_db_col_names, new_db_col_names, *args, **kwargs)
Compare new with old collections and produce diff files. Root keys can be excluded from comparison with
“exclude” parameter

* db_col_names can be:

1. acolleciton name (as a string) asusming they are in the target database.

6.10. biothings.hub 239

BioThings SDK

2. tuple with 2 elements, the first one is then either “source” or “target” to respectively specify src
or target database, and the second element is the collection name.

3. tuple with 3 elements (URI,db,collection), looking like: “mon-
godb://user:pass@host”,”dbname”, collection”), allowing to specify any connection on
any server

steps: - ‘content’ will perform diff on actual content.
* ‘mapping’ will perform diff on ES mappings (if target collection involved)
* ‘reduce’ will merge diff files, trying to avoid having many small files
* ‘post’ is a hook to do stuff once everything is merged (override method post_diff_cols)

mode: ‘purge’ will remove any existing files for this comparison while ‘resume’ will happily ignore
existing data and to whatever it’s requested (like running steps="post” on existing diff folder...)

get_metadata()

class biothings.hub.databuild.differ.ColdHotJsonDiffer (diff func=<function diff docs_jsonpatch>,
*args, **kwargs)

Bases: ColdHotJsonDifferBase, JsonDiffer
diff_type = 'coldhot-jsondiff'

class biothings.hub.databuild.differ.ColdHotJsonDifferBase (diff func, job_manager, log_folder)
Bases: ColdHotDiffer

post_diff cols(old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=None)

Post-process the diff files by adjusting some jsondiff operation. Here’s the process. For updated documents,
some operations might illegal in the context of cold/hot merged collections. Case #1: “remove” op in an
update

from a cold/premerge collection, we have that doc:
coldd = {“_id:1, “A”:’123”, “B”:"456”, “C:True}
from the previous hot merge we have this doc:
prevd = {KG_id?’: 1’ KGD”:”789’7, “C”:True, 6‘E’7:’7abc’7}
At that point, the final document, fully merged and indexed is:
ﬁnald — { “_id”: l, “A”:”123”, “B”:”456”, “C”ITI‘I.IC, “D”:”789”, “E”:”abc”}
We can notice field “C” is common to coldd and prevd.

from the new hot merge, we have:
newd = {*_id”:1, “E”,”abc”} # C and D don’t exist anymore

Diffing prevd vs. newd will give jssondiff operations:
[{‘op’: ‘remove’, ‘path’: “/C’}, {‘op’: ‘remove’, ‘path’: /D’}]
The problem here is ‘C’ is removed while it was already in cold merge, it should stay because

it has come with some resource involved in the premerge (dependent keys, eg. myvariant,
“observed” key comes with certain sources) => the jsondiff opetation on “C” must be discarded.

Note: If operation involved a root key (not ‘/a/c’ for instance) and if that key is found in

the premerge, then
then remove the operation. (note we just consider root keys, if the deletion occurs deeper

in the document, it’s just a legal operation updating innder content)

For deleted documents, the same kind of logic applies Case #2: “delete”

240 Chapter 6. Quick Start

BioThings SDK

from a cold/premerge collection, we have that doc:
coldd = {*_id:1, “A”:’123”, “B”:"456”, “C:True}
from the previous hot merge we have this doc:
prevd = {“_id”:1, “D”:”789”, “C”:True}
fully merged doc:
ﬁnald = {“_id”: ‘l , ‘£A37:’71237” ‘£B37:’74567” “C”:True’ ‘6D’7:’7789’9}
from the new hot merge, we have:

newd = {} # document doesn’t exist anymore

Diffing prevd vs. newd will mark document with _id == 1 to be deleted The problem is we
have data for _id=1 on the premerge collection, if we delete the whole document we’d loose too
much information. => the deletion must converted into specific “remove” jsondiff operations,
for the root keys found in prevd on not in coldd

(in that case: [{‘op’:’remove’, ‘path’:’/D’ }], and not “C” as C is in premerge)

class biothings.hub.databuild.differ.ColdHotSelfContained]sonDiffer (diff func=<function
diff _docs_jsonpatch>,
*args, **kwargs)

Bases: ColdHotJsonDifferBase, SelfContainedJsonDiffer

diff_type = 'coldhot-jsondiff-selfcontained'

class biothings.hub.databuild.differ.DiffReportRendererBase (max_reported_ids=None,
max_randomly_picked=None,
detailed=Fualse)

Bases: object

save (report, filename)
Save report output (rendered) into filename
class biothings.hub.databuild.differ.DiffReportTxt (max_reported_ids=None,
max_randomly_picked=None, detailed=False)

Bases: DiffReportRendererBase

save (report, filename="report.txt")
Save report output (rendered) into filename
exception biothings.hub.databuild.differ.DifferException
Bases: Exception

class biothings.hub.databuild.differ.DifferManager (poll_schedule=None, *args, **kwargs)
Bases: BaseManager

DifferManager deals with the different differ objects used to create and analyze diff between datasources.

build_diff_report (diff folder, detailed=True, max_reported_ids=None)

Analyze diff files in diff_folder and give a summy of changes. max_reported_ids is the number of IDs
contained in the report for each part. detailed will trigger a deeper analysis, takes more time.

clean_stale_status()

During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” sta-
tus should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden
in subclass.

6.10. biothings.hub 241

BioThings SDK

configure (partial_differs=(<class 'biothings.hub.databuild.differ.JsonDiffer'>, <class
'biothings.hub.databuild.differ.SelfContainedJsonDiffer'>))

diff (diff _type, old, new, batch_size=100000, steps=('content’, 'mapping’, 'reduce’, 'post’), mode=None,
exclude=("_timestamp',))

Run a diff to compare old vs. new collections. using differ algorithm diff_type. Results are stored in a
diff folder. Steps can be passed to choose what to do: - count: will count root keys in new collections and
stores them as statistics. - content: will diff the content between old and new. Results (diff files) format
depends on diff_type

diff_info()
diff_report(old_db_col_names, new_db_col_names, report_filename='report.txt', format="txt’,
detailed=True, max_reported_ids=None, max_randomly_picked=None, mode=None)

get_pinfo()
Return dict containing information about the current process (used to report in the hub)

get_predicates()

poll (state, func)

Search for source in collection ‘col’ with a pending flag list containing ‘state’ and and call ‘func’ for each
document found (with doc as only param)

rebuild_diff_ file_list(diff folder)
register_differ (kiass)
setup_log()

trigger_diff (diff type, doc, **kwargs)

Launch a diff given a src_build document. In order to know the first collection to diff against,
get_previous_collection() method is used.

class biothings.hub.databuild.differ.JsonDiffer (diff func=<function diff_docs_jsonpatch>, *args,
**ewargs)

Bases: BaseDiffer
diff_type = 'jsondiff'

class biothings.hub.databuild.differ.SelfContainedJsonDiffer (diff func=<function
diff _docs_jsonpatch>, *args,
*rkwargs)

Bases: JsonDiffer

diff_type = 'jsondiff-selfcontained'
biothings.hub.databuild.differ.diff_worker_count (id_list, db_col_names, batch_num)

biothings.hub.databuild.differ.diff_worker_new_vs_old(id_list_new, old_db_col_names,
new_db_col_names, batch_num, diff _folder,
diff _func, exclude=None,
selfcontained=False)

biothings.hub.databuild.differ.diff worker_old_vs_new(id_list_old, new_db_col_names, batch_num,
diff_folder)

242 Chapter 6. Quick Start

BioThings SDK

biothings.hub.databuild.differ.reduce_diffs(diffs, num, diff folder, done_folder)

biothings.hub.databuild.differ.set_pending_to_diff (col_name)

biothings.hub.databuild.mapper

class biothings.hub.databuild.mapper.BaseMapper (name=None, *args, **kwargs)
Bases: object

Basic mapper used to convert documents. if mapper’s name matches source’s metadata’s mapper, map-
per.convert(docs) call will be used to process/convert/whatever passed documents

load ()
Do whatever is required to fill mapper with mapping data Can be called multiple time, the first time only
will load data
process (docs)
Convert given docs into other docs.
class biothings.hub.databuild.mapper.IDBaseMapper (name=None, convert_func=None, *args,
**kwargs)

Bases: BaseMapper
Provide mapping between different sources

‘name’ may match a “mapper” metatdata field (see uploaders). If None, mapper will be applied to any document
from a resource without “mapper” argument

need_load()

'

process (docs, key_to_convert='_id', transparent=True)

Process ‘key_to_convert’ document key using mapping. If transparent and no match, original key will be
used (so there’s no change). Else, if no match, document will be discarded (default). Warning: key to be
translated must not be None (it’s considered a non-match)

translate(_id, transparent=False)
Return _id translated through mapper, or _id itself if not part of mapper If ‘transparent’ and no match,
original _id will be returned

class biothings.hub.databuild.mapper.TransparentMapper (name=None, *args, **kwargs)
Bases: BaseMapper

load(*args, **kwargs)

Do whatever is required to fill mapper with mapping data Can be called multiple time, the first time only
will load data

process (docs, *args, **kwargs)
Convert given docs into other docs.

6.10. biothings.hub 243

BioThings SDK

biothings.hub.databuild.prebuilder

class biothings.hub.databuild.prebuilder.BasePreCompiledDataProvider (name)

Bases: object
‘name’ is a way to identify this provider (usually linked to a database name behind the scene)

get_all(Q)

Iterate over all register _ids, return a list of collection names where they can be found

register (_id, col_name)

Tell provider that _id can be found in collection named ‘col_name’

class biothings.hub.databuild.prebuilder.MongoDBPreCompiledDataProvider (db_name, name,
connection_params)

Bases: BasePreCompiledDataProvider
‘name’ is a way to identify this provider (usually linked to a database name behind the scene)

get_all (batch_size=100000)
Iterate over all register _ids, return a list of collection names where they can be found

register (_id, col_name)
Tell provider that _id can be found in collection named ‘col_name’

class biothings.hub.databuild.prebuilder.RedisPreCompiledDataProvider (name,
connection_params)

Bases: BasePreCompiledDataProvider
‘name’ is a way to identify this provider (usually linked to a database name behind the scene)

get_all()

Iterate over all register _ids, return a list of collection names where they can be found

register(_id, col_name)

Tell provider that _id can be found in collection named ‘col_name’

biothings.hub.databuild.syncer

class biothings.hub.databuild.syncer.BaseSyncer (job_manager, log_folder)

Bases: object

diff_type = None
get_pinfo()
get_predicates()
get_target_backend()
load_metadata(diff folder)

post_sync_cols(diff folder, batch_size, mode, force, target_backend, steps)

Post-sync hook, can be implemented in sub-class

register_status (status, transient=False, init=False, **extra)

244 Chapter 6. Quick Start

BioThings SDK

setup_log (build_name=None)
sync (diff_folder=None, batch_size=10000, mode=None, target_backend=None, steps=('mapping’, 'content’,
'meta’, 'post’), debug=False)

wrapper over sync_cols() coroutine, return a task

async sync_cols (diff folder, batch_size=10000, mode=None, force=False, target_backend=None,
steps=('mapping’, 'content’, 'meta’, ‘post’), debug=False)

Sync a collection with diff files located in diff_folder. This folder contains a metadata.json file which
describes the different involved collection: “old” is the collection/index to be synced, “new” is the colle-
cion that should be obtained once all diff files are applied (not used, just informative). If target_backend
(bt.databbuild.backend.create_backend() notation), then it will replace “old” (that is, the one being synced)

target_backend_type = None
class biothings.hub.databuild.syncer.ESColdHotJsonDiffSelfContainedSyncer (job_manager,
log_folder)
Bases: BaseSyncer
diff_type = 'coldhot-jsondiff-selfcontained'

target_backend_type = 'es

class biothings.hub.databuild.syncer.ESColdHotJsonDiffSyncer (job_manager, log_folder)
Bases: BaseSyncer
diff_type = 'coldhot-jsondiff'

target_backend_type = 'es

class biothings.hub.databuild.syncer.ESJsonDiffSelfContainedSyncer (job_manager, log_folder)

Bases: BaseSyncer
diff_type = 'jsondiff-selfcontained'

target_backend_type = 'es

class biothings.hub.databuild. syncer.ESJsonDiffSyncer (job_manager, log_folder)
Bases: BaseSyncer

diff type = 'jsondiff'

target_backend_type = 'es

class biothings.hub.databuild.syncer.MongoJsonDiffSelfContainedSyncer (job_manager,
log_folder)

Bases: BaseSyncer

diff_type = 'jsondiff-selfcontained'
target_backend_type = 'mongo’

class biothings.hub.databuild.syncer.MongolsonDiffSyncer (job_manager, log_folder)

Bases: BaseSyncer

diff_type = 'jsondiff'

target_backend_type = 'mongo’'

6.10. biothings.hub 245

BioThings SDK

exception biothings.hub.databuild.syncer.SyncerException
Bases: Exception

class biothings.hub.databuild.syncer.SyncerManager (*args, **kwargs)

Bases: BaseManager

SyncerManager deals with the different syncer objects used to synchronize different collections or indices using

diff files

clean_stale_status()
During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” sta-
tus should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden
in subclass.

configure (klasses=None)
Register default syncers (if klasses is None) or given klasses. klasses is a list of class, or a list of partial’ly
initialized classes.

register_syncer (klass)
setup_log()

sync (backend_type, old_db_col_names, new_db_col_names, diff_folder=None, batch_size=10000,
mode=None, target_backend=None, steps=('mapping', 'content’, 'meta’, 'post’), debug=False)

class biothings.hub.databuild.syncer.ThrottledESColdHotJsonDiffSelfContainedSyncer (max_sync_workers,
*args,
**kwargs)
Bases: ThrottlerSyncer, ESColdHotJsonDiffSelfContainedSyncer
class biothings.hub.databuild.syncer.ThrottledESColdHotJsonDiffSyncer (max_sync_workers,
*args, **kwargs)
Bases: ThrottlerSyncer, ESColdHotJsonDiffSyncer
class biothings.hub.databuild.syncer.ThrottledESJsonDiffSelfContainedSyncer (max_sync_workers,
*args,
**kwargs)
Bases: ThrottlerSyncer, ESJsonDiffSelfContainedSyncer
class biothings.hub.databuild.syncer.ThrottledESJsonDiffSyncer (max_sync_workers, *args,
**kwargs)

Bases: ThrottlerSyncer, ESJsonDiffSyncer

class biothings.hub.databuild.syncer.ThrottlerSyncer (max_sync_workers, *args, **kwargs)
Bases: BaseSyncer

get_predicates()

biothings.hub.databuild.syncer.sync_es_coldhot_jsondiff_worker (diff file, es_config,
new_db_col_names, batch_size,
cnt, force=False,
selfcontained=False,
metadata=None, debug=False)

biothings.hub.databuild.syncer.sync_es_for_update (diff file, indexer, diffupdates, batch_size, res,
debug)

246 Chapter 6. Quick Start

BioThings SDK

biothings.hub.databuild.syncer.sync_es_jsondiff_worker (diff file, es_config, new_db_col_names,
batch_size, cnt, force=False,
selfcontained=False, metadata=None,
debug=False)

Worker to sync data between a new mongo collection and an elasticsearch index

biothings.hub.databuild.syncer.sync_mongo_jsondiff worker (diff file, old_db_col_names,
new_db_col_names, batch_size, cnt,
force=False, selfcontained=False,
metadata=None, debug=False)

Worker to sync data between a new and an old mongo collection

biothings.hub.dataexport

biothings.hub.dataexport.ids

biothings.hub.dataexport.ids.export_ids(col_name)

Export all _ids from collection named col_name. If col_name refers to a build where a cold_collection is defined,
will also extract _ids and sort/uniq them to have the full list of _ids of the actual merged (cold+hot) collection
Output file is stored in DATA_EXPORT_FOLDER/ids, defaulting to <DATA_ARCHIVE_ROOQOT>/export/ids.
Output filename is returned as the end, if successful.

biothings.hub.dataexport.ids.upload_ids (ids_file, redirect_from, s3_bucket, aws_key, aws_secret)

Upload file ids_file into s3_bucket and modify redirect_from key’s metadata so redirect_from link will now point
to ids_file redirect_from s3 key must exist.

biothings.hub.dataindex

biothings.hub.dataindex.idcache

class biothings.hub.dataindex.idcache.IDCache
Bases: object

load (name, id_provider, flush=True)

name is the cache name id_provider returns batch of ids, ie. list(_ids) flush to delete existing cache
mark_done (_ids)
class biothings.hub.dataindex.idcache.RedisIDCache (name, connection_params)
Bases: IDCache
load(id_provider, flush=True)

name is the cache name id_provider returns batch of ids, ie. list(_ids) flush to delete existing cache

mark_done (_ids)

6.10. biothings.hub 247

BioThings SDK

biothings.hub.dataindex.indexer_cleanup

class biothings.hub.dataindex.indexer_cleanup.CleanUpResult (iterable=(),/)

Bases: 1ist

class biothings.hub.dataindex.indexer_cleanup.Cleaner (collection, indexers, logger=None)
Bases: object

async clean(cleanups)

find (env=None, keep=3, **filters)

static plain_text(cleanups)
biothings.hub.dataindex.indexer_cleanup.test_clean()
biothings.hub.dataindex.indexer_cleanup.test_find()

biothings.hub.dataindex.indexer_cleanup.test_str()

biothings.hub.dataindex.indexer_payload

class biothings.hub.dataindex.indexer_payload.IndexMappings (dict=None,/, **kwargs)
Bases: _IndexPayload

async finalize(client)

Generate the ES payload format of the corresponding entities originally in Hub representation. May require
querying the ES client for certain metadata to determine the compatible data format.

class biothings.hub.dataindex.indexer_payload.IndexSettings(dict=None,/, **kwargs)
Bases: _IndexPayload

async finalize(client)

Generate the ES payload format of the corresponding entities originally in Hub representation. May require
querying the ES client for certain metadata to determine the compatible data format.

biothings.hub.dataindex.indexer

class biothings.hub.dataindex.indexer.ColdHotIndexer (build_doc, indexer_env, index_name)
Bases: object

MongoDB to Elasticsearch 2-pass Indexer. (
1st pass: <MongoDB Cold Collection>, # static data 2nd pass: <MongoDB Hot Collection> #
changing data

) =>
<Elasticsearch Index>

INDEXER

alias of Indexer

async index(job_manager, batch_size=10000, steps=('pre’, 'index', 'post’), ids=None, mode=None,
**kwargs)

248 Chapter 6. Quick Start

BioThings SDK

class biothings.hub.dataindex.indexer.DynamicIndexerFactory (urls, es_host, suffix="_current")

Bases: object

In the context of autohub/standalone instances, create indexer with parameters taken from versions.json URL.
A list of URLSs is provided so the factory knows how to create these indexers for each URLs. There’s no way
to “guess” an ES host from a URL, so this parameter must be specified as well, common to all URLs “suffix”
param is added at the end of index names.

create(name)

class biothings.hub.dataindex.indexer.IndexManager (*args, **kwargs)

Bases: BaseManager
An example of config dict for this module. {

“indexer_select’: {
None: “hub.dataindex.indexer.Druglndexer”, # default “build_config.cold_collection” :
“mv.ColdHotVariantIndexer”,

}, “env”: {
“prod”: {
“host”: “localhost:9200”, “indexer”: {
“args”: {
“timeout”: 300, “retry_on_timeout”: True, “max_retries”: 10,
1, “bulk™: {
“chunk_size”: 50 “raise_on_exception”: False
}, “concurrency”: 3
}, “index”: [
for information only, only used in index_info {“index”: “my-
drugs_current”, “doc_type”: “drug”}, {“index”: “mygene_current”,

99,

“doc_type”: “gene”’}

1,
bo“dev”: { ...}

}
DEFAULT_INDEXER

alias of Indexer

clean_stale_status()

During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” sta-
tus should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden
in subclass.

cleanup (env=None, keep=3, dryrun=True, **filters)
Delete old indices except for the most recent ones.

6.10. biothings.hub 249

BioThings SDK

Examples

>>> index_cleanup()

>>> index_cleanup("production™)

>>> index_cleanup("local", build_config="demo")
>>> index_cleanup('local"”, keep=0)

>>> index_cleanup(_id="<elasticsearch_index>")

configure (conf)

get_indexes_by_name (index_name=None, env_name=None, limit=10)

Accept an index_name and return a list of indexes get from all elasticsearch environments or from specific
elasticsearch environment.

If index_name is blank, it will be return all indexes. limit can be used to specify how many indexes should
be return.

The list of indexes will be like this: [
{

113 EL) 113 2

“index_name”: ...”7, “build_version”: .7, “count”: 1000, ““creation_date”:
1653468868933, “environment”: {

99,

“name”: “env name”, “host”: “localhost:9200,

1
get_pinfo()
Return dict containing information about the current process (used to report in the hub)

get_predicates()

index (indexer_env, build_name, index_name=None, ids=None, **kwargs)

Trigger an index creation to index the collection build_name and create an index named index_name (or
build_name if None). Optional list of IDs can be passed to index specific documents.

index_info (remote=Fualse)

Show index manager config with enhanced index information.

update_metadata(indexer_env, index_name, build_name=None, _meta=None)

Update _meta field of the index mappings, basing on
1. the _meta value provided, including {}.
2. the _meta value of the build_name in src_build.

3. the _meta value of the build with the same name as the index.

250 Chapter 6. Quick Start

BioThings SDK

Examples

update_metadata(“local”, “mynews_201228_vsdevjd”) update_metadata(“local”,
“mynews_201228_vsdevjd”, _meta={}) update_metadata(“local”, “mynews_201228_vsdevjd”,
_meta={“author”:”’b”’}) update_metadata(“local”, “mynews_201228_current”,

“mynews_201228_vsdevjd”)
validate_mapping (mapping, env)
class biothings.hub.dataindex.indexer.Indexer (build_doc, indexer_env, index_name)
Bases: object
MongoDB -> Elasticsearch Indexer.
async do_index (job_manager, batch_size, ids, mode, **kwargs)

async index(job_manager, **kwargs)

Build an Flasticsearch index (self.es_index_name) with data from MongoDB collection
(self.mongo_collection_name).

“ids” can be passed to selectively index documents.
“mode” can have the following values:
* ‘purge’: will delete an index if it exists.
* ‘resume’: will use an existing index and add missing documents.
* ‘merge’: will merge data to an existing index.
¢ ‘index’ (default): will create a new index.
async post_index(*args, **kwargs)
async pre_index(*args, mode, **kwargs)
setup_log()
class biothings.hub.dataindex.indexer.IndexerCumulativeResult (dict=None,/, **kwargs)

Bases: _IndexerResult

exception biothings.hub.dataindex.indexer.IndexerException
Bases: Exception

class biothings.hub.dataindex.indexer.IndexerStepResult (dict=None,/, **kwargs)
Bases: _IndexerResult

class biothings.hub.dataindex.indexer.MainIndexStep (indexer)
Bases: Step

method: property(abc.abstractmethod(lambda _: ...)) = 'do_index'
name: property(abc.abstractmethod(lambda _: ...)) = 'index'
state

alias of MainIndexJSR

class biothings.hub.dataindex.indexer.PostIndexStep (indexer)
Bases: Step

method: property(abc.abstractmethod(lambda _: ...)) = 'post_index'

6.10. biothings.hub 251

BioThings SDK

name: property(abc.abstractmethod(lambda _: ...)) = 'post'

state
alias of PostIndexJSR

class biothings.hub.dataindex.indexer.PreIndexStep (indexer)

Bases: Step

method: property(abc.abstractmethod(lambda _: ...)) = 'pre_index'
name: property(abc.abstractmethod(lambda _: ...)) = 'pre'

state

alias of PreIndexJSR

class biothings.hub.dataindex.indexer.ProcessInfo(indexer, concurrency)

Bases: object

get_pinfo(step="", description="")
Return dict containing information about the current process (used to report in the hub)

get_predicates()

class biothings.hub.dataindex.indexer.Step (indexer)
Bases: ABC

catelog = {'index': <class 'biothings.hub.dataindex.indexer.MainIndexStep'>,
'post': <class 'biothings.hub.dataindex.indexer.PostIndexStep'>, 'pre': <class
'biothings.hub.dataindex.indexer.PreIndexStep'>}

classmethod dispatch(name)

async execute(*args, **kwargs)

method: <property object at 0x7£2042654900>
name: <property object at 0x7£2042654950>
static order (steps)

state: <property object at 0x7f2042654e00>

biothings.hub.dataindex.indexer_registrar

class biothings.hub.dataindex.indexer_registrar.IndexJobStateRegistrar (collection, build_name,

index_name,
**context)

Bases: object

failed(error)
static prune(collection)
started(step='index")

succeed (result)

252 Chapter 6. Quick Start

BioThings SDK

class biothings.hub.dataindex.indexer_registrar.MainIndexJSR(collection, build_name, index_name,
**context)

Bases: IndexJobStateRegistrar

started()

class biothings.hub.dataindex.indexer_registrar.PostIndex]JSR(collection, build_name, index_name,
**context)

Bases: IndexJobStateRegistrar

started()

class biothings.hub.dataindex.indexer_registrar.PreIndex]SR(collection, build_name, index_name,
**context)

Bases: IndexJobStateRegistrar

started()
succeed (result)

class biothings.hub.dataindex.indexer_registrar.Stage (value)
Bases: Enum

An enumeration.

DONE = 2
READY = 0
STARTED = 1
at(stage)

biothings.hub.dataindex.indexer_registrar.test_registrar()

biothings.hub.dataindex.indexer_schedule

class biothings.hub.dataindex.indexer_schedule.Schedule (fotal, batch_size)
Bases: object

completed()

suffix(string)
biothings.hub.dataindex.indexer_schedule.test_01()
biothings.hub.dataindex.indexer_schedule.test_02()
biothings.hub.dataindex.indexer_schedule.test_03()

biothings.hub.dataindex.indexer_schedule.test_04()

6.10. biothings.hub 253

BioThings SDK

biothings.hub.dataindex.indexer_task

class biothings.hub.dataindex.indexer_task.ESIndex(client, index_name, **bulk_index_args)
Bases: ESIndex

mexists (ids)
Return a list of tuples like [

(Uid_0, True), (_id_1, False), (_id_2, True),
]
mget (ids)

Return a list of documents like [
{ “_id”: “0”’ “a”: “b” }’ { “_id”: “1”, “C”: ud” }, #404S are Sklpped
]

mindex (docs)

Index and return the number of docs indexed.

class biothings.hub.dataindex.indexer_task.IndexingTask(es, mongo, ids, mode=None, logger=None,
name="task")

Bases: object

Index one batch of documents from MongoDB to Elasticsearch. The documents to index are specified by their
ids.

dispatch()
index()
merge()
resume()

class biothings.hub.dataindex.indexer_task.Mode (value)
Bases: Enum

An enumeration.

INDEX = 'index'
MERGE = 'merge'
PURGE = 'purge'
RESUME = 'resume'

biothings.hub.dataindex.indexer_task.dispatch(mg_client_args, mg_dbs_name, mg_col_name,
es_client_args, es_blk_args, es_idx_name, ids, mode,
name)

biothings.hub.dataindex.indexer_task.test®()
biothings.hub.dataindex.indexer_task.testl()
biothings.hub.dataindex.indexer_task.test_00(0)

biothings.hub.dataindex.indexer_task.test_clients()

254 Chapter 6. Quick Start

BioThings SDK

biothings.hub.dataindex.snapshooter

class biothings.hub.dataindex.snapshooter.Bucket (client, bucket, region=None)
Bases: object

create (acl="private")
exists()

class biothings.hub.dataindex.snapshooter.CloudStorage (type: str, access_key: str, secret_key: str,
region: str = 'us-west-2")

Bases: object

access_key: str

get()
region: str = 'us-west-2'
secret_key: str
type: str
class biothings.hub.dataindex.snapshooter.CumulativeResult (dict=None,/, **kwargs)

Bases: _SnapshotResult

class biothings.hub.dataindex.snapshooter.ProcessInfo(env)
Bases: object

JobManager Process Info. Reported in Biothings Studio.
get_pinfo(step, snapshot, description="")
get_predicates()

class biothings.hub.dataindex.snapshooter.RenderedStr(seq)
Bases: _UserString

class biothings.hub.dataindex.snapshooter.RepositoryConfig(dict=None,/, **kwargs)
Bases: UserDict

{

“type”: “s3”, “name”: “s3-$(Y)”, “settings”: {
“bucket”: “<SNAPSHOT_BUCKET_NAME>", “base_path”: “mynews.info/$(Y)”, # per year

}
property bucket
format (doc=None)
Template special values in this config.
For example: {
“bucket”: “backup-$(Y)”, “base_path” : “snapshots/%(_meta.build_version)s”

} where “_meta.build_version” value is taken from doc in dot field notation, and the current year replaces

“$(Y)”.

6.10. biothings.hub 255

BioThings SDK

property region
property repo

class biothings.hub.dataindex.snapshooter.SnapshotEnv (job_manager, cloud, repository, indexer,
*kkwargs)

Bases: object
post_snapshot (¢fg, index, snapshot, **kwargs)
pre_snapshot (cfg, index, snapshot, **kwargs)
setup_log(index)
snapshot (index, snapshot=None, recreate_repo=False)
class biothings.hub.dataindex.snapshooter.SnapshotManager (index_manager, *args, **kwargs)
Bases: BaseManager
Hub ES Snapshot Management
Config Ex:
env.<name>: {

“cloud”: {

99, &6

“type”: “aws”, # default, only one supported. “access_key”: <——— >, “secret_key™:

99,

<——>, “region”: “us-west-2”
}, “repository”: {
“name”: “s3-$(Y)”, “type”: “s3”, “settings”: {

“bucket™: “<SNAPSHOT_BUCKET_NAME>", “base_path™: “my-
gene.info/$(Y)”, # year

}, “acl”: “private”,
}, “indexer”: {
“name”: “local”, “args”: {
“timeout’: 100, “max_retries”: 5
}, “monitor_delay”: 15,

}

clean_stale_status()

During startup, search for action in progress which would have been interrupted and change the state to
“canceled”. Ex: some donwloading processes could have been interrupted, at startup, “downloading” sta-
tus should be changed to “canceled” so to reflect actual state on these datasources. This must be overriden
in subclass.

cleanup (env=None, keep=3, group_by="build_config', dryrun=True, **filters)

Delete past snapshots and keep only the most recent ones.

256 Chapter 6. Quick Start

BioThings SDK

Examples

>>> snapshot_cleanup()
>>> snapshot_cleanup("s3_outbreak")
>>> snapshot_cleanup("s3_outbreak", keep=0)

configure(conf)

delete_snapshots (snapshots_data)
list_snapshots(env=None, **filters)
static pending_snapshot (build_name)

poll (state, func)

Search for source in collection ‘col’ with a pending flag list containing ‘state’ and and call ‘func’ for each

document found (with doc as only param)

snapshot (snapshot_env, index, snapshot=None, recreate_repo=Fualse)

Create a snapshot named “snapshot” (or, by default, same name as the index) from “index” according to

environment definition (repository, etc...) “env”.

snapshot_a_build (build_doc)

Create a snapshot basing on the autobuild settings in the build config. If the build config associated with

this build has: {

“autobuild’: {

9, <

“type”: “snapshot”, // implied when env is set. env must be set. “env’: “local” // which es

env to make the snapshot.
} Attempt to make a snapshot for this build on the specified es env “local”.

snapshot_info (env=None, remote=False)

class biothings.hub.dataindex.snapshooter.StepResult (dict=None,/, **kwargs)
Bases: _SnapshotResult

class biothings.hub.dataindex.snapshooter.TemplateStr (seq)
Bases: _UserString

biothings.hub.dataindex.snapshot_cleanup

biothings.hub.dataindex.snapshot_cleanup.delete(collection, element, envs)

biothings.hub.dataindex.snapshot_cleanup.find(collection, env=None, keep=3, group_by=None,
return_db_cols=False, **filters)

biothings.hub.dataindex.snapshot_cleanup.plain_text (element)
biothings.hub.dataindex.snapshot_cleanup.test_£ind()

biothings.hub.dataindex.snapshot_cleanup.test_print()

6.10. biothings.hub

257

BioThings SDK

biothings.hub.dataindex.shapshot_registrar

class biothings.hub.dataindex.snapshot_registrar.MainSnapshotState(col, _id)
Bases: _TaskState

func = '_snapshot'

name 'snapshot’
regx = True
step = 'snapshot'

class biothings.hub.dataindex.snapshot_registrar.PostSnapshotState(col, _id)
Bases: _TaskState

func = 'post_snapshot'

name 'post’
regx = True
step = 'post-snapshot'

class biothings.hub.dataindex.snapshot_registrar.PreSnapshotState(col, _id)
Bases: _TaskState

func = 'pre_snapshot'

name = 'pre

step 'pre-snapsh